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The half–form
√
dx

Simone Camosso

Abstract

In this brief paper we try to find an “interpretation” for the
formalism

√
dx.

1 Introduction

The problem to make sense of
∫ √

dx is treated in this article. In
what follows we explore a solution called “the corrected” integral,
formally we denote it by

γ

∫
[a,b]

√
dx. Some inspiration for this study

can be drawn from Ramanujan [4] and his work on convergent
series. The problem is approached from the point of view of the
calculus, with some relations to the fractional calculus in Ross
[6]. A well definition of the symbol

√
dx can be useful in geometric

quantization (Woodhouse [8]) and different areas of mathematics.
In the contest of geometric quantization the symbol

√
dx denotes a

section of the quantum line bundle defined on a compact, complex,
symplectic manifold M .

2 Integration of
√
dx with a Rie-

mannian integral

In this section we start to examine the situation evaluating the
following integral: ∫

[a,b]

√
dx. (1)
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Let P = {x0 = a, x1, . . . , xn = b} be a partition of the interval
[a, b] in n subintervals of amplitude b−a

n
. Thus

∫
[a,b]

√
dx = lim

n→+∞

n∑
i=1

»
∆xi, (2)

where ∆xi = xi − xi−1 for i = 1, . . . , n. This is the Riemann
integral where, instead to consider as “base of rectangles” the
quantities ∆xi , we consider

√
∆xi . The result is:

∫
[a,b]

√
dx = lim

n→+∞

n∑
i=1

√
b− a
n

=

= lim
n→+∞

»
(b− a)n = +∞.

(3)

The integral diverges at +∞, the result is not satisfactory at all.

3 On a Ramanujan sum

In order to find a way to make this infinity “disappear”, let us
consider this result due to Ramanujan[4]:

√
1 +
√

2 +
√

3 + · · ·+
√
n =

=
2

3
n
√
n+

1

2

√
n−

ζ
Ä

3
2

ä
4π

+
1

24
√
n

+ o

Ç
1

n
5
2

å
.

(4)

This is an asymptotic expansion of the sum of the square roots
of the first n natural numbers. The main term in the expansion,
when n goes to infinity, is 2

3
n

3
2 . Another similar series, always due

to Ramanujan is:

1
√

1
+

1
√

2
+

1
√

3
+ · · ·+

1
√
n

=

= 2
√
n+

1

2
√
n

+ ζ

Ç
1

2

å
+ o

Ç
1

n
3
2

å
.

(5)
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The idea can be to modify the sum of rectangles using the factor
γ(n) = 1√

n
. In this case:

∫
[a,b]

√
dx = lim

n→+∞
γ(n) ·

n∑
i=1

√
b− a
n

=

=
»

(b− a) lim
n→+∞

√
n
√
n

=
»
b− a.

(6)

This is not the Riemannian integral used before but it is a variation
with a normalized sum. The problem was in fact the divergence of
the series of square roots. This sort of “correction” bring to a finite
result that corresponds to the square root of the initial interval.

We denote this corrected integral with the notation:

γ

∫
[a,b]

√
dx = lim

n→+∞ γ

∑
n
i=1

»
∆xi, (7)

where γ

∑
is the sum corrected by the factor γ(n) and γ

∫
is the

“corrected” integral.

4 The geometric quantization pro-
gram and the definition of

√
dx

An attempt to define the half–form
√
dx has been done in the

program of geometric quantization. The geometric quantization is
a process that associate to a symplectic manifold an Hilbert space
representing the space of quantum states (for references about
the geometric quantization program see Woodhouse [8] or works of
Kostant [3] and Souriau [7]).

The idea is to see the half–form
√
dx as a section of the square

root of the canonical line bundle associated to the polarization
adopted during the process of geometric quantization. The concept
of 1

2
–form is strictly correlated to the concept of 1

2
–density. In
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particular we have that 1
2
–densities can be identified with 1

2
–forms.

Let us consider the case of R. The space R is a vectorial space
where we can choose an orientation. If F (R) represents the set of
frames of R we can consider the action of GL(1,R) on F (R) that
is simply the scalar multiplication. We define the set of 1

2
-densities

as:
|R|

1
2 =

{
ν : F (R)→ C : ν(a · v) = ν(v)| det a|12 ,

∀v ∈ F (R), a ∈ GL(1,R)}.
(8)

This set is a line bundle denoted by |R|
1
2 → R where the 1–

dimensional fiber at x ∈ R is |Rx|
1
2 → Rx . Rigorous definitions

of 1
2
–forms and 1

2
–densities with its properties can be found in

Guillemin and Sternberg [1], Hall [2] and Rawnsley [5].

In geometric quantization the 1
2
–forms define, intrinsically, an

half–form Hilbert space with an inner product and a norm. Let
us consider the case of R. Then the symplectic manifold is M =
T∨R = R2 . Let P be the vertical polarization of M with the
orientation of R so that oriented 1–forms are positive multiple of
dx. Let

√
KP to be the trivial bundle with trivializing section

√
dx

such that
√
dx⊗

√
dx = dx. Then the half–form σ = f(x)

√
dx,

for some real function f(x), has the norm:

‖σ‖2 =
∫
R
|f(x)|2dx. (9)

5 The corrected integral as appli-
cation from the 1

2
–forms to R

Let us consider the following 1
2
–form σ =

√
dx. In order to

be precise, we must view this form as the form 1 ⊗
√
dx of the

quantum line bundle L⊗
√
KP . In this case we have that:

‖σ‖2 =
∫

[a,b]
dx = b− a, (10)
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where we considered as a base space the interval [a, b]. Now the
question is if exists a square root of the following equation:

σ · σ = b− a, (11)

where the product here is the squared norm in the Hilbert space
of half–forms. In order to answer the question let us consider the
corrected integral:

γ

∫
[a,b]

√
dx =

»
b− a. (12)

We can see that:

γ

∫
[a,b]

√
dx ·

γ

∫
[a,b]

√
dx = (b− a). (13)

So it is possible to apply the corrected integral in order to find
the corrected result. In other terms we can see the corrected
integral as a map γ

∫
: |R|

1
2 → R, omitting the quantum line bundle

associated.

6 Interesting integrals in
√
dx

Let us consider the integral:∫
[a,b]

x
√
dx. (14)

Without the correction the integral diverges. We can try with:

γ

∫
[a,b]

x
√
dx. (15)

Let us consider the following partition of [a, b] with xi = a+ (i−
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1) · h and xi+1,= a+ i · h, where h = b−a
n

. Thus:

γ

∫
[a,b]

x
√
dx = lim

n→+∞
γ(n)

n∑
i=1

(a+ i · h)
√
h =

= lim
n→+∞

a ·
»
b− a+

»
(b− a)3

n2

n∑
i=1

i =

= a ·
»
b− a+

»
(b− a)3

2
,

(16)

where we used the fact that
∑n
i=1 i = n·(n+1)

2
.

A similar result is the following:

γ

∫
[a,b]

x2
√
dx = a2

»
b− a+

+ (b− a)
»
b− a+

1

3
(b− a)2

»
b− a.

(17)

The calculations are similar to the previous case where the formula
used now is

∑n
i=1 i

2 = n·(n+1)·(2n+1)

6
.

7 The corrected integral as appli-
cation from the 1

2
–forms to R

In this section we see as our definition of corrected fractional inte-
gral is in perfect agreement with the definition from the fractional
calculus [6]. We start recalling the formula for the 1

2
–integral

between a and b, this is given by the formula:

D
−1

2

[a,b]f(t) =
1

Γ
Ä

1
2

ä ∫ b
a

(b− t)−1
2f(t)dt (18)

Now we observe that if we compute the 1
2
–integral for the constant

function f(t) = 1 we find that:

D
−1

2

[a,b]1 =
2

Γ
Ä

1
2

ä»b− a. (19)
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We observe that we have considered the fractional integral over
the interval [a, b]. Usually the integral (18) is considered on the
intervall [0, x] and, for general calculations of (18), we need to use
the beta integral:

∫ x
0

(x− y)dybdy =
Γ(d+ 1)Γ(b+ 1)

Γ(b+ d+ 2)
xb+d+1. (20)

We can compare the result from the theory of fractional calculus
2

Γ(1
2)

√
b− a with our definition using the corrected integral (12)

that gives
√
b− a (only a constant factor of difference!). In fact:

γ

∫
[a,b]

1
√
dx =

Γ
Ä

1
2

ä
2
D
−1

2

[a,b]1. (21)

8 Observations and conclusion

The main observation is that we have realized the following relation:

γ

∫
[a,b]

1
√
dx =

√∫
[a,b]

1 dx. (22)

The relation seems not true in general
γ

∫
[a,b]f(x)

√
dx 6=

»∫
[a,b] f(x) dx.

The fact is clear observing that for f(x) = x the previous relation is
false. We can try to define an integral function F (x) =

γ

∫
[0,x]1

√
ds,

in this case:
F (x) =

γ

∫
[0,x]

1
√
ds =

√
x. (23)

Other questions remain open. For instance, does a similar defini-
tion exist for n

√
dx when n = 3, 4, . . .? Additionally, an important

discussion topic concerns the geometrical interpretation of this
correction.
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Convexity and discrete
inequalities

José Luis Díaz-Barrero

Abstract

In this short note, using the convexity of real functions some
discrete inequalities are obtained.

1 Introduction

As is well-known, a function f : R→ R is convex if the secant line
between any two points on its graph lies above or on the graph
itself. Specifically, for any t ∈ [0, 1], the value of the secant line at
x = at+ (1− t)b is given by tf(a) + (1− t)f(b), while the value
of the function at x = at+ (1− t)b is f(at+ (1− t)b). Thus, f is
convex if and only if

f(at+ (1− t)b) ≤ tf(a) + (1− t)f(b) for all a, b ∈ R, t ∈ [0, 1].

When f is concave the inequality reverses. Equality case occurs
when a = b or f is linear, as can be easily checked. Putting
q1 = t, q2 = 1 − t, x1 = a and x2 = b the last inequality can be
written as

f(q1x1 +q2x2) ≤ q1f(x1)+q2f(x2) for all x1, x2 ∈ R, q1 +q2 = 1.

Jensen’s inequality [3] generalizes the previous statement, which
corresponds to the special case of two points in Jensen’s inequality.
For ease of reference, the statement and its proof are provided
below.
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Theorem 1. For a convex function f : R→ R, numbers x1, x2, . . . , xn
in its domain, and positive weights qi such that q1 +q2 + . . .+qn =
S , Jensen’s inequality can be stated as

f

(
1

S

n∑
i=1

qixi

)
≤

1

S

n∑
i=1

qif(xi),

with the inequality reversed if f is concave.

Proof. To prove this finite form of Jensen’s inequality, we argue by
induction, assuming without loss of generality (WLOG) that S = 1.
By the convexity hypothesis, the statement holds for n = 2. Now,
suppose the statement is true for some n. That is, we assume

f

(
n∑
i=1

qixi

)
≤

n∑
i=1

qif(xi)

for any q1, q2, . . . , qn such that q1 + q2 + . . . + qn = 1. Now, we
want to prove it for n + 1. Since at least one of the qi is strictly
smaller than 1, say qn+1 then by convexity inequality, we have

f

(
n+1∑
i=1

qixi

)
= f

(
(1− qn+1)

n∑
i=1

qi

1− qn+1

xi + qn+1xn+1

)

≤ (1− qn+1)f

(
n∑
i=1

qi

1− qn+1

xi

)
+ qn+1 f(xn+1).

Since q1 +q2 + . . .+qn+1 = 1, then
n∑
i=1

qi

1− qn+1

= 1, and applying

the inductive hypothesis gives

f

(
n∑
i=1

qi

1− qn+1

xi

)
≤

n∑
i=1

qi

1− qn+1

f(xi)

therefore

f

(
n+1∑
i=1

qixi

)
≤ (1− qn+1)

n∑
i=1

qi

1− qn+1

f(xi) + qn+1 f(xn+1)

=
n+1∑
i=1

qif(xi).
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We deduce the inequality is true for n + 1, and by PMI it follows
that the result is also true for all integer n greater or equal than 2.

In this paper, the key idea is to use the convexity of a function
f : R→ R and apply Jensen’s inequality to derive useful discrete
inequalities, similar to those published in [2].

2 Discrete inequalities

In this section, some discrete inequalities are presented. We begin
with the following generalization of Nesbitt’s inequality [4].

Theorem 2. Let x1, x2, . . . , xn be n ≥ 2 positive real numbers.
Then, it holds:

x1

x2 + x3 + . . .+ xn
+

x2

x1 + x3 + . . .+ xn
+. . .+

xn

x1 + x2 + . . .+ xn−1

≥
n

n− 1
.

Proof. Let s = x1 + x2 + . . . + xn and D = {x ∈ R | x > s}.
Consider the function f : D→ R defined by

f(x) =
x

s− x

which is convex on D because

f ′(x) =
s

(s− x)2
> 0

and
f ′′(x) =

2s

(s− x)3
> 0.

Applying Jensen’s inequality with qi = 1/n, 1 ≤ i ≤ n, yields

1

n

n∑
i=1

f(xi) ≥ f
(

1

n

n∑
i=1

xi

)
⇔

1

n

n∑
i=1

xi

s− xi
≥ f(s/n) =

1

n− 1
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from which the statement follows. Equality holds when x1 = x2 =
. . . = xn .

Putting n = 3, the preceding result becomes Nesbitt’s inequality.

Next, we present the following interesting inequality.

Theorem 3. Let ak, (1 ≤ k ≤ n) be real numbers such that 0 <
ak ≤ 1 and let α be a positive real number. Then

1

n

n∑
k=1

ak − α
1 + ak

≥
G− α
1 +G

,

where G is the geometric mean of a1, a2, . . . , an .

Proof. Let us denote by xk = ln ak for 1 ≤ k ≤ n. We have
xk ≤ 0. Let α be a positive constant and consider the function

f : [−∞, 0] → R defined by f(x) =
ex − α
1 + ex

. Since f ′(x) =

(α+ 1)ex

(1 + ex)2
and f ′′(x) =

(α+ 1)ex(1− ex)
(1 + ex)3

≥ 0, then f is convex,

and applying Jensen’s inequality, yields

1

n

n∑
k=1

exk − α
1 + exk

≥
eA − α
1 + eA

,

where A represents the arithmetic mean of the xk . In terms of ak
the preceding inequality becomes

1

n

n∑
k=1

ak − α
1 + ak

≥
G− α
1 +G

,

where G represents the geometric mean of the ak ’s. This completes
the proof.

An immediate consequence of the preceding result are the following
corollaries.
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Corollary 1. Let ak, (1 ≤ k ≤ n) be real numbers such that
0 < ak ≤ 1. Then,

n∑
k=1

nak −G
1 + ak

≥
(
n

2

)
2G

1 +G
,

where G is the geometric mean of a1, a2, . . . , an .

Proof. Putting α = G/n in Theorem 3, and rearranging terms, the
statement follows. Equality holds when a1 = a2 = . . . = an .

Corollary 2. Let ak, (1 ≤ k ≤ n) be real numbers such that
0 < ak ≤ 1. Then,

1

n

n∑
k=1

nak −m
1 + ak

≥
nG−m
1 +G

,

where m is the minimum of a1, a2, . . . , an .

Proof. Putting α = m/n in Theorem 3, and rearranging terms, the
statement follows. Equality holds when a1 = a2 = . . . = an .

Convexity will be used to obtain the following constrain inequality.

Theorem 4. Let f : R→ R be a convex function, and let a, b, c be
positive reals such that abc = 1. Then, it holds:

f(a)

1 + a+ ab
+

f(b)

1 + b+ bc
+

f(c)

1 + c+ ca
≥ f(1).

Proof. Let a, b, c be positive reals such that abc = 1, then the
following identities hold:

∑
cyc

1

1 + a+ ab
= 1 and

∑
cyc

a

1 + a+ ab
= 1,

as can be easily checked. Applying Jensen’s inequality, we get

∑
cyc

f(a)

1 + a+ ab
≥ f

(∑
cyc

a

1 + a+ ab

)
= f(1),
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and therefore, ∑
cyc

f(a)

1 + a+ ab
≥ f(1).

Applying the previous result to the function Γ(x) instead of f(x),
which is convex for all x > 0 and satisfies Γ(1) = 1 (a well-known
property) the following inequality was proposed in [1].

Let a, b, c be three positive reals numbers such that abc = 1.
Prove that

Γ(a)

1 + a+ ab
+

Γ(b)

1 + b+ bc
+

Γ(c)

1 + c+ ca
≥ 1,

where Γ is the gamma function.

Finally, we close this section with another constrain inequality.

Theorem 5. Let x1, x2, . . . , xn be n ≥ 2 real numbers such that
0 ≤ xi < 1 and x1 + x2 + . . .+ xn = 1. Then, it holds:

n∏
i=1

1 + xi

1− xi
≥
Ç
n+ 1

n− 1

ån
.

Proof. Consider the real function f : (−1, 1) → R defined by

f(x) = ln

Ç
1 + x

1− x

å
. Since f ′(x) =

2

1− x2
> 0 and f ′′(x) =

4x

(1− x2)2
≥ 0, then f is convex. Applying Jensen’s inequality and

taking into account the constrain x1 + x2 + . . .+ xn = 1, yields

1

n

n∑
i=1

f(xi) ≥ f
Ç
x1 + x2 + . . .+ xn

n

å
,

or equivalently,

ln

Ç
1 + x1

1− x1

å
+ ln

Ç
1 + x2

1− x2

å
+ . . .+ ln

Ç
1 + xn

1− xn

å
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≥ n ln

Ç
n+ x1 + x2 + . . .+ xn

n− x1 + x2 + . . .+ xn

å
= ln

Ç
n+ 1

n− 1

ån
.

On account of the injectivity of the logarithm function, from the
preceding the statement follows. Equality holds when x1 = x2 =
. . . = xn = 1/n.

3 Applications

Hereafter, we give some applications of the previous results.

Problem 1. If a, b, c are positive reals such that a + b + c = 1,
then find the minimum value of the expressionÇ

a+
1

a

å100

+

Ç
b+

1

b

å100

+

Ç
c+

1

c

å100

.

Solution. First, we observe that 0 < a, b, c < 1 and we consider the

real function f : (0, 1)→ R defined by f(x) =

Ç
x+

1

x

å100

. Since

f ′(x) = 100

Ç
x+

1

x

å99

·
Ç

1−
1

x2

å
and

f ′′(x) = 100 ·99

Ç
x+

1

x

å98

·
Ç

1−
1

x2

å2

+100

Ç
x+

1

x

å99

·
Ç

2

x3

å
> 0,

then f is convex on (0, 1) and by Jensen’s inequality, we haveÇ
a+

1

a

å100

+

Ç
b+

1

b

å100

+

Ç
c+

1

c

å100

= f(a) + f(b) + f(c)

≥ 3 f

Ç
a+ b+ c

3

å
= 3 f

Ç
1

3

å
= 10

Ç
10

3

å99

.

The equality holds when a = b = c = 1/3, and the minimum value
of the given expression is

10

Ç
10

3

å99

.
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Problem 2. (Mediterranean Mathematical Competition 2025) If
a, b, c are positive reals no larger than one, then prove that it holds

2a− 3
√
abc

1 + a
+

2b− 3
√
abc

1 + b
+

2c− 3
√
abc

1 + c
≥

3
3
√
abc

1 +
3
√
abc

.

Solution. Putting α = G/2 in Theorem 3, we obtain

1

3

Ñ
2a− 3

√
abc

2 (1 + a)
+

2b− 3
√
abc

2 (1 + b)
+

2c− 3
√
abc

2 (1 + c)

é
≥

3
√
abc

2 (1 +
3
√
abc)

from which, after simplifying and rearranging terms, the statement
follows. Equality holds when a = b = c.

Problem 3. If a, b, c are positive reals no larger than one, then
prove that it holds

2a−m
1 + a

+
2b−m
1 + b

+
2c−m
1 + c

≥ 3

Ñ
2

3
√
abc−m

1 +
3
√
abc

é
,

where m = min{a, b, c}.

Solution. Putting α = m/2 in Theorem 3, we obtain

1

3

(
2a−m
2 (1 + a)

+
2b−m
2 (1 + b)

+
2c−m
2 (1 + c)

)
≥

2
3
√
abc−m

2 (1 +
3
√
abc)

from which, after simplifying and rearranging terms, the statement
follows. Equality holds when a = b = c, as can be easily checked.
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Problems
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical problems. Proposals
are always welcome. Please observe the following guidelines when
submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on
separate sheets, each indicating the name and address of the
sender. Drawings must be suitable for reproduction.

2. Proposals should be accompanied by solutions. An asterisk (*)
indicates that neither the proposer nor the editor has supplied
a solution.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

The section is divided into four subsections: Elementary Problems,
Easy–Medium High School Problems, Medium–Hard High School
Problems, and Advanced Problems mainly for undergraduates.
Proposals that appeared in Math Contests around the world and
most appropriate for Math Olympiads training are always welcome.
The source of these proposals will appear when the solutions are
published.

Solutions to the problems stated in this issue should be posted
before

October 30, 2025
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Elementary Problems

E–137. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let a, b, c be three positive integer numbers such that 7ab = 2c6 .
Is the number a7 + b7 + c7 prime or composite?

E–138. Proposed by Michel Bataille, Rouen, France. Let x, a1, a2 ,
a3, a4 be complex numbers such that a1+a2+a3+a4 = 0. Evaluate∑
1≤i<j<k≤4

(x+ai+aj +ak)
3−

∑
1≤i<j≤4

(x+ai+aj)
3 +

∑
1≤i≤4

(x+ai)
3.

E–139. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Consider the square ABCD , with a point M on the side DC . If
the value of the sum S = tan(MAB) + tan(MBA) + tan(AMB)
is minimal, calculate the value of the ratio MD/AB .

E–140. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
In the lottery game of Springfield, five numbers are drawn out
of 50 every week. Homer fills out a single lottery ticket with the
same five numbers in each of the 52 weeks of the year. Flanders
uses a different scheme. He plays only once a year with 52 tickets
simultaneously: he fills them out in pairwise different ways. Is it
true that both of them have the same chance of having a ticket
with five correct numbers?

E–141. Proposed by Goran Conar, Varaždin, Croatia. Let a1, a2,
. . . , an be positive real numbers satisfying a1 + a2 + · · ·+ an = n.
Prove that

n

2
+

1

2

n∑
i=1

a4
i ≥

n∑
i=1

Ã
a8
i + a4

i + 1

a2
i + ai + 1

≥
n∑
i=1

ai
√
ai.

E–142. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find all real roots of the equation 9x4−24x3−23x2 +58x+26 = 0,
if it is known that it has four distinct real roots, two of which add
up to 2.
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Easy–Medium Problems

EM–137. Proposed by Michel Bataille, Rouen, France. Let n be
a nonnegative integer. Evaluate

n∑
k=0

(k + 1)

(
n+ 2

k + 2

)
.

EM–138. Proposed by Miguel Amengual Covas, Cala Figuera,
Mallorca, Spain. We denote by A, B the endpoints of the diameter
of a semicircle Γ of radius a and construct the rectangle ABCD ,
with BC = a

√
2, which contains it. If E is a point on Γ, distinct

from A and B , and the lines DE , CE intersect the line AB at
points F , G respectively, prove that

AG2 +BF 2 = 4a2.

EM–139. Proposed by Goran Conar, Varaždin, Croatia. Let a, b, c
be positive real numbers such that a+ b+ c = 4. Prove that

4
√
aabbcc ≥

4

3
.

EM–140. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let z1, z2, . . . , zn be complex numbers. Prove that

1

2

Ñ
n∑
k=1

|zk|+
∣∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣∣
é2

≥
n∑
k=1

|zk|2 +

∣∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣∣
2

.

EM–141. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a scalene triangle with incenter I and centroid G. Let
Ga be the orthogonal projection of G on BC . Knowing that the
points A, I,Ga are collinear, find the ratio AI/IGa .

EM–142. Proposed by José Luis Díaz-Barrero, Barcelona, Spaion.
What is the maximum number of regions into which a circle can
be divided by segments connecting n points on its boundary?
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Medium–Hard Problems

MH–137. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Is
it possible to delete one number from the set {1, 2, . . . , 10000}
so that the remaining 9999 numbers can be arranged in an or-
der a1, a2, . . . , a9999 , such that the differences |a1 − a2|, |a2 −
a3|, . . . , |a9998 − a9999|, |a9999 − a1| are all distinct?

MH–138. Proposed by Michel Bataille, Rouen, France. Let I be
the incenter of triangle ABC and let the line AI intersect BC
at D . Let E be the circumcenter of ∆ABD and let the line EC
intersect the circumcircle of ∆BIC again at F . Prove that ED is
tangent to the circumcircle of ∆CDF .

MH–139. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Lisa and Bart play the following game. They first choose a positive
integer N , and then they take turns writing numbers on a black-
board. Lisa starts by writing 1. Thereafter, when one of them has
written the number n, the next player writes down either n+ 1 or
2n, provided the number is not greater than N . The player who
writes N on the blackboard wins.

(a) Determine which player has a winning strategy if N = 2025.
(b) Find the number of positive integers N ≤ 2025 for which Bart

has a winning strategy.

MH–140. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a non-right triangle with AB 6= AC and let Γ be its
circumcircle with center O . Let I be an arbitrary point in the
interior of triangle ABC (I 6= O). Let D be the intersect point of
BC and AO and E be the second intersect point of AI with Γ.
Let F be the point symmetric to point A about the OI . Knowing
that DEFI is a cyclic quadrilateral, prove that DI = FI .

MH–141. Proposed by José Luis Díaz-Barrero, Barcelona, Spain
and Óscar Rivero Salgado, Santiago de Compostela, Spain. For
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any positive number n, let τ (n) denote the number of positive
divisors of n. We say that a positive number is nice if 2 τ (10n) <
5 τ (n). Determine how many positive numbers smaller or equal
than 2025 are nice.

MH–142. Proposed by José Luis Díaz-Barrero Barcelona, Spain.
Let n, k be integers with n ≥ 2 and 1 ≤ k ≤ n. Show that

(−1)n−k
(
n

k

)
n∑
j=1
j 6=k

k

k − j
+

n∑
j=1
j 6=k

(−1)n−j
(
n

j

)
j

k − j
= 0.



26 Arhimede Mathematical Journal

Advanced Problems

A–137. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Compute the following limit

lim
n→∞

1

n

n∑
h=1

n∑
k=1

h+ k

h2 + k2
.

A–138. Proposed by Michel Bataille, Rouen, France. Let n be a
positive integer. Evaluate

∫ π
0

(cosx)2n(cos 2x+ · · ·+ cos(2nx)) dx.

A–139. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain. Determine the smallest positive integer λ such
that if A and B are any 2× 2 integer matrices satisfying that all
of the matrices

A, A+B, A+ 2B, . . . , A+ λB

are invertible and their inverses also have integer entries, then for
any integer t, the matrix A+ tB is also invertible and its inverse
has integer entries.

A–140. Proposed by Vasile Mircea Popa, "Lucian Blaga" Univer-
sity of Sibiu, Romania. Calculate the following integral:

∫ ∞
0

lnx

(x+ 1)(x2 + 1)(x4 + 1)
dx.

A–141. Proposed by Joseph Santmyer, Las Cruces, New Mexico,
USA. The nth harmonic number Hn is defined as Hn =

n∑
k=1

1
k

and the generalized harmonic number of order m is defined as
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Hn,m =
n∑
k=1

1
km

. Show that

∞∑
n=1

H2
n

2n
= ζ(2) + ln2(2) (1)

∞∑
n=1

Hn,2

2n
= ζ(2)− ln2(2) (2)

∞∑
n=1

1

2n

n−1∑
k=1

Hk

k(k + 1)
=

ζ(2)

2
− ln2(2) (3)

where ζ is the Riemann zeta function.

A–142. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let ABC
be a non-right triangle with AB 6= AC and let G be its centroid,
I be its incenter and Γ be its circumcircle with center O . Let D
be the foot of the perpendicular drawn from C to IO . Let Ga, Ib
be the feet of the perpendiculars drawn from G to BC and from I
to AC respectively. Let Mb be the midpoint of AC and E be the
reflection of Ib in the point Mb . Knowing that IbIDGa is a cyclic
quadrilateral, prove that ABIE is a cyclic quadrilateral too.
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Mathlessons
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical notes and lessons
with material useful to solve mathematical problems.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Some relations involving the
elements of a triangle

Jordi Ferré Garcia and José Luis Díaz-Barrero

1 Introduction

In this math lesson, various relationships between the elements
of a triangle such as those appearing in [1] are explored. These
relations, among others, will be introduced, discussed, and worked
in the annual training sessions organized by the Barcelona Math
Circle (BMC) for very young students who have a general interest
in mathematics and, more specifically, in mathematical contests.

2 The relations

Hereafter, we present some well-known relations between the el-
ements of a triangle. During this lecture, we will denote by a, b,
and c the lengths of sides BC , AC , and AB , respectively; by h
the length of the altitude from vertex A; by r and R the inradius
and circumradius; and by s the semiperimeter of triangle ABC .

We begin by giving formulas to compute the area of 4ABC .

Theorem 1 (Area of a triangle). In any triangle ABC , it holds:

[ABC] =
abc

4R
= sr =

»
s(s− a)(s− b)(s− c)

The last expression is known as Heron’s formula.
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Proof. We have

[ABC] =
bh

2
=
bc sinA

2
=
abc

4R

because
a

sinA
= 2R on account of Sine Law. To prove Heron’a

formula, we have on account of Cosine Law, that

[ABC] =
1

2
ac sinB =

1

2
ac

»
1− cos2B =

1

2
ac

Ã
1−

Ç
a2 + c2 − b2

2ac

å2

=
1

4

»
(a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b)

=
»
s(s− a)(s− b)(s− c).

From the preceding, it immediately follows that

R =
abc

4
»
s(s− a)(s− b)(s− c)

and r =

√
(s− a)(s− b)(s− c)

s
.

Next, we give an interesting and most useful relation.

Theorem 2. In any triangle ABC , it holds ab + bc + ca = s2 +
r2 + 4rR.

Proof. From r =

√
(s− a)(s− b)(s− c)

s
we get

sr2 = (s−a)(s−b)(s−c) = s3−s2(a+b+c)+s(ab+bc+ca)−abc.

on account that a + b + c = 2s and abc = 4Rrs, the preceding
expression becomes

sr2 = −s3+s(ab+bc+ca)−4Rrs⇔ r2 = −s2+ab+bc+ca−4Rr

from which the statement follows.

An immediate consequence of the las result is the following
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Corollary 1. In any triangle ABC with the usual notations, it
holds that a2 + b2 + c2 = 2(s2 − r2 − 4Rr).

Proof. Putting a+ b+ c = 2s and ab+ bc+ ca = s2 + r2 + 4Rr in

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca),

yields a2 + b2 + c2 = 4s2 − 2(s2 + r2 + 4Rr)=2(s2 − r2 − 4Rr).

Let ABC be a triangle with side lengths a, b, c. An useful substi-
tution is the following: a = x+ y, b = y + z, and c = z + x where
x, y, z are positive real numbers. From, the preceding immediately

follows x =
1

2
(c+ a− b), y =

1

2
(a+ b− c), and z =

1

2
(b+ c− a).

Using this transformation, we get

R =
abc

4
»
s(s− a)(s− b)(s− c)

=
(x+ y)(y + z)(z + x)

4
»
xyz(x+ y + z)

r =

√
(s− a)(s− b)(s− c)

s
=

»
xyz(x+ y + z)

x+ y + z

From the preceding expressions, and taking into account the well-
known Cesaro’s inequality: (x + y)(y + z)(z + x) ≥ 8xyz , (x >
0, y > 0, z > 0), immediately follows

R

r
≥ 2 (Euler’s inequality).

The following result allow us to compute the length of the cevian
in triangle ABC .

Theorem 3 (Stewart). Let D be a point in the side BC of triangle
ABC . Then, it holds

b2m+ c2n = a(p2 +mn),

where m = BD,n = DC, and p = AD, respectively.
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D CB

A

 

a

c
b

m n

p

Scheme for proving Stewart’s theorem.

Proof. Since ∠ADB+∠ADC = π, then cos ◊�ADB+cos ◊�ADC = 0.
Taking into account Cosine’s Law, we have

m2 + p2 − c2

2mp
+
n2 + p2 − b2

2np
= 0,

or equivalently, n(m2 + p2− c2) +m(n2 + p2− b2) = 0 from which
follows b2m+ c2n = (m+n)(p2 +mn) = a(p2 +mn), as claimed.

From the preceding the length of the cevian p is given by

p =

√
b2m+ c2n− amn

a
.

Corollary 2 (Length of the median). In any triangle ABC the
length of the median is given by the expression

ma =
1

2

»
2b2 + 2c2 − a2 (cyclic)

Proof. Applying Stewart’s theorem with m = n = a/2 and p =

ma, we have
b2a

2
+
c2a

2
= a

(
m2
a +

a2

4

)
from which we get 4m2

a =

2b2 + 2c2 − a2, and the statement follows.

The preceding expressions are also known as Apollonius formulae.
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Adding up the expressions 4m2
a = 2b2 + 2c2 − a2 , 4m2

b = 2c2 +
2a2 − b2 and 4m2

c = 2a2 + 2b2 − c2 , we get the following relation

m2
a +m2

b +m2
c =

3

4
(a2 + b2 + c2).

Now, we will derive a formula to compute the length of the angle
bisector. It follows from

Theorem 4. Let D be a point in the side BC of triangle ABC .
Then,

BD

DC
=
AB sin∠DAB

AC sin∠DAC

Proof. Notice that triangles BB′D and CC′D are similar be-
cause both are right triangles ∠BDB′ = ∠CDC′. So, ∠B′BD =
∠C′CD. Then, BB′ = AB sin∠DAB and CC′ = AC sin∠CAD.

B' C'D

C

B

A

n

m

wa

Scheme for bisector.

Therefore,
BD

DC
=
BB′

CC′
=
AB sin∠DAB

AC sin∠DAC
and the proof is complete.
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Corollary 3 (Length of angle bisector). In any triangle ABC the
length of the angle bisector interior and exterior are given by

wa =
1

b+ c

»
(a+ b+ c)(b+ c− a)bc

=
2

b+ c

»
s(s− a)bc

w1a =
1

b− c
»

(a+ b− c)(c+ a− b)bc

=
2

b− c
»

(s− b)(s− c)bc (b > c).

Proof. Applying the preceding result when AD is the angle bisector

wa , we have
BD

DC
=
AB

AC
or

m

n
=
c

b
that jointly with m + n = a

gives m =
ca

b+ c
and n =

ba

b+ c
. Applying Stewart’s theorem,

yields

b2
ca

b+ c
+ c2

ab

b+ c
= a

(
w2
a +

bca2

(b+ c)2

)
from which we get

w2
a = bc

[
1−

Ç
a

b+ c

å2
]

and

wa =

Ã
bc

[
1−

Ç
a

b+ c

å2
]

=
1

b+ c

 
bc
Å
(b+ c)2 − a2

ã
=

2

b+ c

»
s(s− a)bc.

Likewise, the length of the external bisector w1a is given by

w1a =
2

b− c
»

(s− b)(s− c)bc.
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Indeed, suppose that AL′ the exterior bisector on angle A meets
again the circumcircle of 4ABC at N ′ opposite diametrically
to point N . Then 4ACN ′ and 4ABL′ are similar because
∠N ′AC = ∠BAL′ on account that AL′ is a bisector. Furthermore,
∠AN ′C = ∠ABL′ because they are supplementary of ∠ABC .
Thus, we have

AB

AL′
=
AN ′

AC

or

AB ·AC = AL′ ·AN ′ = AL′(L′N ′ −AL′) = AL′ · L′N ′ −AL′2.

On account of the power point respect to a circle, we have

L'

N'

N

CB

A

Scheme for exterior bisector.

AL′ · L′N ′ = L′B · L′C.

Thus, AB ·AC = L′B ·L′C−AL′2 and AL′2 = L′B ·L′C−AB ·AC .

Implied by Theorem 4 we obtain that
L′B

L′C
=
AB

AC
, which, after

rearranging terms, turns into

L′B

AB
=
L′C

AC
=
L′C − L′B
AC −AB

=
BC

AC −AB
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from which AL′ =
ac

b− c
and L′C =

ab

b− c
follows. Finally,

AL′2 =
a2bc

(b− c)2
−bc =

bc(a+ b− c)(a− b+ c)

(b− c)2
=

4bc(s− b)(s− c)
(b− c)2

from which we get AL′ =
2

b− c
»

(s− b)(s− c)bc = w1a .

Finally, we conclude this note by presenting a result that is a
combination of the preceding ones.

Theorem 5. Let ABC be a triangle. Then, the diameter of its
circumcircle is give by

2R =
w2
a

ha

Ã
m2
a − h2

a

w2
a − h2

a

.

Proof. In Figure 1, we observe that m2
a−h2

a = AM2−AD2 = DM2

L' MLDC B

A

Figure 1.

and w2
a − h2

a = AL2 −AD2 = DL2 . We have to prove that

2R =
AL2

AD
·
DM

DL
.

Let AL′ be the exterior bisector of angle A. Since 4ALL′ ∼
4ADL then

AL

DL
=
LL′

AL
⇔

AL2

DL
= LL′.
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To compute LL′ we consider the right triangle ALL′ and we have

LL′2 = w2
a + w2

1a =
4

(b+ c)2
s(s− a)bc+

4

(b− c)2
(s− b)(s− c)bc

=
4a2b2c2

(b2 − c2)2
and LL′ =

2abc

b2 − c2
.

On the other hand, applying Cosine Law, we have

AC2 = AM2 +MC2 − 2AM ·MC cos(AM,MC)

= AM2 +MC2 + 2MC ·DM
and

AB2 = AM2 +MB2 − 2AM ·MB cos(AM,MB)

= AM2 +MB2 − 2MB ·DM.

Subtracting the second expression from the first one, yields

b2 − c2 = 2a ·DM ⇒ DM =
b2 − c2

2a
.

Finally, we have

AL2

AD
·
DM

DL
=

2abc

b2 − c2
·
b2 − c2

2aha
=
abc

aha
=

4R[ABC]

2[ABC]
= 2R.
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A Unique Number Pattern

N. Thiruniraiselvi and M. A. Gopalan

Abstract

Let a, b, c be three non-zero single digit integers respectively.
We show that there exists an integer N such that the three
digit integer abc = N + 2 and its reverse integer cab = 2N .

Keywords: Pair of equations, Integer solutions, Linear Diophantine
equation.

1 Introduction

Number is the essence of calculation. Numbers have varieties of
range and richness [1-3]. Number patterns are groups of numbers
that follow rules. Recognizing number patterns is a vital prob-
lem solving skill. In this short note, a typical number pattern is
illustrated.

2 Methodology

Given three non-zero single digit integers a, b, c, we have to find
positive integer N satisfying the following pair of equations

abc = N + 2,

cab = 2N.
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To do that we start by eliminating N between the above equations,
and we obtain the following relation between the digits a, b, c:

2abc− cab = 4. (1)

Now, using the decimal number system, (1) may be written as

2 (100a+ 10b+ c)− (100c+ 10b+ a) = 4,

or
199a+ 10b− 98c = 4 (2)

which is a linear Diophantine equation in three variables. The inte-
ger solution to the above equation (2) exists because the greatest
common divisor (199, 10, 98) divides 4 on the RHS of (2), as it is
well-known. The procedure to solve it is illustrated below:

From (2), we write

b = 9c− 19a+
4 + 8c− 9a

10
. (3)

Putting d =
4 + 8c− 9a

10
expression (2) becomes b = 9c− 19a+d .

Substituting the above equation in (2), yields 199a− 10 (9c− 19a+
d)− 98c = 4 or 9a− 8c+ 10d = 4. Writing the last expression in
the form 8c = 8(a+ d) + (a+ 2d− 4), we get

c = a+ d+
a+ 2d− 4

8
. (4)

Now, putting e =
a+ 2d− 4

8
the above becomes c = a + d + e.

From (4) we get a = 8e−2d+4. Combining the last two expressions,
yields c = 9e− d+ 4.

Substituting the above expressions in b = 9c− 19a+ d, we obtain

b = 9c−19a+d = 9 (9e−d+4)−19 (8e−2d+4)+d = 30d−71e−40.

Choose d, e in the preceding expressions such that the values of
a, b, c are single digit integers respectively. By inspection, d =
4, e = 1 leads to a = 4, b = 9, c = 9 and we get

N = 497.



Volume 12, No. 1, Spring 2025 41

Hence, coming back to the first equations, we observe that

499 = 497 + 2

994 = 2 · 497.

Following the above reasoning, one may observe the following
patterns

4999 = 4997 + 2, 9994 = 2 · 4997

49999 = 49997 + 2, 99994 = 2 · 49997

and so on.

3 Conclusion

Understanding number patterns is essential for students of all ages
to appreciate the beauty and presence of mathematics in everyday
life. The study of number patterns remains a source of fascination
for both amateur and professional mathematicians, as they can be
explored both algebraically and geometrically.

In conclusion, readers and researchers in this field may explore
additional number patterns, further uncovering their significance
and applications.
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Contests
In this section, the Journal offers sets of problems appeared in
different mathematical contests over the world, as well as their
solutions. This gives readers an opportunity to find interesting
problems and develop their own solutions.

No problem is permanently closed. We will be very pleased to
consider new solutions to problems posted in this section for pub-
lication. Please, send submittals to José Luis Díaz-Barrero, En-
ginyeria Civil i Ambiental, UPC BARCELONATECH, Jordi Girona
1-3, C2, 08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Problems and solutions from
the 12th edition of

BarcelonaTech Mathcontest

O. Rivero Salgado and J. L. Díaz-Barrero

1 Problems and solutions

Hereafter, we present the four problems that appeared in the paper
given to the contestants of the BarcelonaTech Mathcontest 2025,
as well as their official solutions.

Problem 1. Let n be a positive integer. Show that the equation

3
√
x+ 3
√
y = 3
√
n

has solution in positive integers x, y if and only if the number n is
divisible by the cube of an integer greater than 1.

Solution. Suppose that the positive integers x, y, n satisfy the the

given equation. Then the positive numbers α = 3

 
x

n
and β = 3

 
y

n
satisfy the equation α+ β = 1. Their cubes are rational numbers.
From the identity

3(α+ β)(α3 − β3) = (α− β) 3(α+ β) (α2 + αβ + β2)

= (α− β)(2(α+ β)3 + (α3 + β3))

we conclude that α−β is a rational number, and consequently the
numbers α, β themselves are rational, as can be easily checked.



Volume 12, No. 1, Spring 2025 45

Writing the number α in the form of an irreducible fraction α =
k/m we have the equality xm3 = nk3 , from which it follows that
n is divisible by m3 . Since x < n, then k < m, so the number n
is divisible by the cube of the number m, greater than 1.

Conversely, assuming that the number n has a divisor of the form
m3 (m > 1), we assume

x =
n

m3
, y =

n(m− 1)3

m3

from which we get the required equation 3
√
x+ 3
√
y = 3
√
n.

Problem 2. In the chess tournament played in a round-robin
system, only the first-year and second-year students participated.
Despite the fact that there were three times as many second-year
students as first-year students, they together scored only 3 points
more than the first-year students. How many students participated
in the tournament?

Solution. Let n be the number of first-year students who partici-
pated in the tournament. The number of second-year students was
then 3n, and the total number of students was 4n. They played a

total of
1

2
4n(4n − 1) matches between them. Since one point is

awarded for a win, half a point for a draw, and no points for a loss,
the total number of points distributed is equal to the number of
matches played. If the first-year students scored p points and the
second-year students scored d points, then p + d = 2n(4n − 1).
The second-year students scored only three points more than the
first-year students, so p = d − 3. By substituting the second
equation into the first, we get

d = n(4n− 1) +
3

2
.

The number of points the second-year students scored is at least
equal to the number of points they earned in the matches between
themselves. Thus

n(4n− 1) +
3

2
≥

3n(3n− 1)

2
.
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By simplifying, we get the inequality n + 2 ≥ n2 . In the set of
natural numbers, this inequality is satisfied only by the numbers
n = 1 and n = 2, because for n ≥ 3, n+ 2 ≤ 2n < n2 .
The tournament could thus have been participated in by either 3
second-year students and 1 first-year student, or 6 second-year
students and 2 first-year students. In both cases, we need to
confirm that the tournament could have proceeded in a way that
satisfies the conditions of the problem. Indeed,

• In the case of four participants, the first-year student scored
1.5 points in matches against the second-year students. The
second-year students then scored the remaining 4.5 points.

• In the case of 8 participants, in all the matches between a
first-year and a second-year student, except for one that ended
in a draw, the first-year student won. The first-year students
thus scored 12.5 points and the second-year students scored
15.5 points.

Thus, the number of participants is 4: (first, second)= (1, 3) or 8:
(first, second)= (2, 6).

Problem 3. The incircle of triangle ABC is tangent to the sides
BC , CA, and AB at points D , E , and F , respectively. Points M ,
N , and J are the centers of the incircles of the triangles AEF ,
BDF , and DEF , respectively. Prove that the points F and J are
symmetric with respect to the line MN .

Solution. We will first prove that the points M and N are the
centers of the shorter arcs FE and FD of the incircle of triangle
ABC , respectively. Indeed, let M ′ be the center of the shorter arc
FE of this circle. The line AC is tangent to the circle at point E ,
so

∠AEM ′ = ∠EFM ′. (1)

Since point M ′ is the center of the arc EF , the triangle EM ′F
is isosceles. Therefore, ∠EFM ′ = ∠FEM ′ , which, together with
equality (1), shows that point M ′ lies on the angle bisector of
∠AEF . Similarly, we prove that this point lies on the angle bisector
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J

N

M

F

E

D

C

BA

Scheme for solving problem 3.

of ∠AFE , so it coincides with the center M of the incircle of
triangle AEF . We proceed in the same manner for point N .

The incircle of triangle ABC is simultaneously the circumcircle
of triangle DEF . Since M is the center of the shorter arc EF
of this circle, the line DM contains the angle bisector of ∠EDF .
Therefore, the point J lies on this line, and J is the center of the
incircle of this triangle. Similarly, we conclude that point J lies on
the line EN .

To justify that points J and F are symmetric with respect to the
line MN , it is sufficient to show that triangles MFN and MJN
are congruent, as this would imply that they are symmetric with
respect to the line MN . However, we have

∠JMN = ∠DMN = ∠FMN,

where the second equality follows from the fact that N is the center
of the arc FD . Similarly, we obtain ∠JNM = ∠FNM . The
triangles MFN and MJN therefore have equal corresponding
angles and a common side MN , so they are congruent (by the
Angle-Side-Angle criterion). This concludes the solution.
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Problem 4. Find the largest possible value of the expression

x1x2 + x2x3 + . . .+ xn−1xn + xnx1

for a given n ≥ 3, where x1, x2, . . . , xn is an arbitrary arrangement
of the integer numbers 1, 2, . . . , n.

Solution. Let Sn(x1, x2, . . . , xn) denote the above expression and
let Mn be its maximal value. Since S3(x1, x2, x3) = 1·2+2·3+3·1 =
11 when {x1, x2, x3} = {1, 2, 3}, we have M3 = 11. Since the
given expression is independent of cyclic permutations, it suffices
for n > 3 to consider only those arrangements x1, x2, . . . , xn of
1, 2, . . . , n for which x1 = n. We then obtain

Sn(n, x2, x3, . . . , xn) = Sn−1(x2, x3, . . . , xn)− x2xn + nx2 + nxn

= Sn−1(x2, x3, . . . , xn)+n2− (n−x2)(n−xn) ≤Mn−1 +n2−1 ·2,
with equality when Sn−1(x2, x3, . . . , xn) = Mn−1 and, at the same
time, {x2, xn} = {n − 2, n − 1}. If we make the induction
hypothesis Tn that there exist an arrangement y1, y2, . . . , yn−1

of 1, 2, . . . , n − 1 for which y1 = n − 1, yn−1 = n − 2, and
Sn−1(y1, y2, . . . , yn−1) = Mn−1 (Tn holds for n = 4), we obtain
the recurrence relation Mn = Mn−1 + n2 − 2, where n, yn−1, yn−2 ,
. . . , y2, y1 is the arrangement of 1, 2, . . . , n belonging to the as-
sumption Tn+1 . Now we evaluate

Mn = M3 + (42 − 2) + (52 − 2) + . . .+ (n2 − 2)

= 11 + (42 + 52 + . . .+ n2)− 2(n− 3)

=
1

6
(2n3 + 3n2 − 11n+ 18).

Óscar Rivero Salgado
Universidad de Santiago de Compostela
Spain
riverosalgado@gmail.com

José Luis Díaz-Barrero
Barcelona Math Circle (BMC)
Barcelona, Spain
jose.luis.diaz@upc.edu
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Solutions
No problem is ever permanently closed. We will be very pleased to
consider new solutions or comments on past problems for publica-
tion.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

Elementary Problems

E–131. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let α, β, γ be real numbers. If cosα + cosβ + cos γ = 0 and
sinα+ sinβ + sin γ = 0, then prove that

sin 5α+ sin 5β + sin 5γ

cos 5α+ cos 5β + cos 5γ
= tan(α+ β + γ).

Solution 1 by the proposer. Let a = cosα+ i sinα, b = cosβ +
i sinβ and c = cos γ + i sin γ . Since a + b + c = 0, then the
identity a5 + b5 + c5− 5abc = (a+ b+ c)(a4 + b4 + c4−ab3−a3b−
b3c− bc3− c3a− ca3 + 5abc) becomes a5 + b5 + c5 = 5abc. Putting
the values of the complex numbers a, b, c in the last expression,
yields

ei5α + ei5β + ei5γ = 5eiαeiβeiγ = 5ei(α+β+γ).

Identifying, real and imaginary parts, we get cos 5α + cos 5β +
cos 5γ = 5 cos(α+ β + γ) and sin 5α+ sin 5β + sin 5γ = 5 sin(α+
β + γ) from which the statement immediately follows.
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Solution 2 by Michel Bataille, Rouen, France. Let z1 = eiα ,
z2 = eiβ, z3 = eiγ and p = z1z2z3 . From the hypothesis, we
have z1 + z2 + z3 = 0. It follows that z1 + z2 + z3 = 0, that

is,
1

z1

+
1

z2

+
1

z3

= 0 (since |z1| = |z2| = |z3| = 1). Therefore

z1z2 + z2z3 + z3z1

p
= 0 so that z1z2 + z2z3 + z3z1 = 0.

Note that z1, z2, z3 are distinct (if for example z1 = z2 , then 2z1 =
−z3 , a contradiction when we take moduli).
We deduce that (z − z1)(z − z2)(z − z3) = z3 − p so that z1, z2, z3

are the three cubic roots of the complex p. As a result, we have

{z1, z2, z3} = {z1, ωz1, ω
2z1}

where ω = exp(2πi/3).
It follows that

z5
1 + z5

2 + z5
3 = z5

1 + ω5z5
1 + ω10z5

1 = (1 + ω + ω2)z5
1 = 0

(since ω5 = ω2, ω10 = ω ), that is,

e5iα + e5iβ + e5iγ = 0.

As a result, cos 5α+ cos 5β+ cos 5γ = sin 5α+ sin 5β+ sin 5γ = 0
(and the required relation is meaningless).

Solution 3 by Albert Stadler, Herrliberg, Switzerland. The equa-
tion is equivalent to

(sin(5α) + sin(5β) + sin(5γ) )cos(α+ β + γ)

= (cos(5α) + cos(5β) + cos(5γ) )sin(α+ β + γ)

which in turn is equivalent to

sin(4α− β − γ) + sin(4β − γ − α) + sin(4γ − α− β) = 0,

since sin(5α) cos(α+ β + γ) − cos(5α) sin(α+ β + γ) )

= sin(5α− (α+ β + γ)),

and similarly for the cyclic variants.
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Let a = eiα, b = eiβ, c = eiγ . Then,

cosα + cosβ + cosγ = 0 is equivalent to a+ 1
a

+ b+ 1
b

+ c+ 1
c

= 0.

sinα + sinβ + sinγ = 0 is equivalent to a− 1
a

+ b− 1
b

+ c− 1
c

= 0.

Hence a + b + c = 0 and 1/a + 1/b + 1/c = 0 or equivalently
ab + bc + ca = 0. Thus, sin(4α− β − γ) + sin(4β − γ − α) +
sin(4γ − α− β) = 0 is equivalent to

a4

bc
−
bc

a4
+
b4

ca
−
ca

b4
+
c4

ab
−
ab

c4
= 0

which in turn is equivalent to

−a5b5 + a8b3c3 + a3b8c3 − a5c5 − b5c5 + a3b3c8 = 0.

This is a symmetric function in a, b, c and can therefore be ex-
pressed according the symmetric polynomials theorem as a poly-
nomial in u = a+ b+ c, v = ab+ bc+ ca, w = abc. We find

−a5b5 + a8b3c3 + a3b8c3 − a5c5 − b5c5 + a3b3c8

= −v5 + w3u5 + 5uv3w − 5u2vw2 − 5v2w2 + 5uw3

−5u3vw3 + 5uv2w3 + 5u2w4 − 5vw4.

However u = v = 0. Hence

−a5b5 + a8b3c3 + a3b8c3 − a5c5 − b5c5 + a3b3c8 = 0,

and we are done.

E–132. Proposed by Mihaela Berindeanu, Bucharest, Romania.
(Correction). Let ABC be a triangle with circumcircle Γ. Choose
an arbitrary point D on side AC , and let X be the intersection
of line BD with Γ, different from B . If the circumcircle Ω1 of the
triangle BDC cut AB in E , the circumcircle Ω2 of the triangle
ABD cut BC in F and AE = CE , show that

AB +BC

AC
=
BX

XA
.
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Solution by the proposer. B,C,D,E concyclic points ⇒ from
the power of a point A with respect to the circle Ω1 :

AD ·AC = AE ·AB (1)

A,B, F,D concyclic points ⇒ from the power of a point C with
respect to the circle Ω1 :

CD ·AC = CF ·BC (2)

Divide (1) by (2) ⇒
AD ·AC
CD ·AC

=
AE ·AB
CF ·BC

, with AE = CF ⇒
AD

CD
=
AB

BC
and from the hypothesis ⇒

AE = CF ⇒ BD bisector of ∠ABC ⇒ AX = XC

Apply Ptolemy’s theorem in the cyclic quadrilateral ABCX

AB ·XC +BC ·AX = AC ·BX where XA = XC

⇒ XA(AB +BC) = AC ·BX ⇒
AB +BC

AC
=
BX

XA
.
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Also solved by José Gibergans-Báguena, BarcelonaTech, Terrassa,
Spain and José Luis Díaz-Barrero, Barcelona, Spain.

E–133. Proposed by José Luis Díaz-Barrero, Barcelona, Spain
and José Gibergans-Báguena, BarcelonaTech, Terrassa, Spain. Let
a, b, c be positive reals such that a+ b+ c = abc. Prove that

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≥
a+ b+ c

4
.

Solution 1 by Sarah B. Seales, Arizona State University, USA;
Miquel Amengual Covas, Cala Figuera, Mallorca, Spain; Brian
Bradie, Christopher Newport University, Newport News, VA;
Henry Ricardo, Westchester Area Math Circle, Purchase, New
York, USA; Nicuşor Zlota, “Traian Vuia” Technical College,
Focşani, Romania; Ioan Viorel Codreanu, Satulung, Maramures,
Romania, and Daniel Văcaru, National Economic College „Maria
Teiuleanu”, Pites, ti, Romania (same solution). The inequality is
equivalent to

a2

a(1 + bc)
+

b2

b(1 + ca)
+

c2

c(1 + ab)
≥
a+ b+ c

4
.

From Bergström’s inequality,

a2

a(1 + bc)
+

b2

b(1 + ca)
+

c2

c(1 + ab)
≥

(a+ b+ c)2

a+ b+ c+ 3abc

and using the condition, the right hand side becomes

(a+ b+ c)2

4(a+ b+ c)
=
a+ b+ c

4
.

Equality occurs only if a = b = c =
√

3.

Solution 2 by Albert Stadler, Herrliberg, Switzerland. We have

a

1 + bc
+

b

1 + ca
+

c

1 + ab
−
a+ b+ c

4

=
a

abc
a+b+c

+ bc
+

b
abc

a+b+c
+ ca

+
c

abc
a+b+c

+ ab
−
a+ b+ c

4abc
a+b+c
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=
(a+ b+ c)

2(
2a3 + 2b3 + 2c3 + a2b+ ab2 + a2c+ c2a+ b2c+ bc2 − 12abc

)
4abc(2a+ b+ c)(a+ 2b+ c)(a+ b+ 2c)

≥ 0,

by the AM-GM inequality.

Solution 3 by the proposers. Multiplying each term of the frac-
tions in the LHS by its numerator, we get

a2

a+ abc
+

b2

b+ bca
+

c2

c+ cab
≥
a+ b+ c

4
.

Putting s = a + b + c in the preceding expression, we obtain on
account of the constraint,

a2

a+ s
+

b2

b+ s
+

c2

c+ s
≥
a+ b+ c

4
.

The LHS of the previous expression suggest to consider the function

f(x) =
x2

s+ x

which is convex in the set of positive numbers. Indeed,

f ′(x) =
x(2s+ x)

(s+ x)2
and f ′′(x) =

2s2

(s+ x)3
≥ 0.

Then, applying Jensen’s inequality, we have

f(a) + f(b) + f(c) ≥ 3 f

Ç
a+ b+ c

3

å
or

a2

a+ s
+

b2

b+ s
+

c2

c+ s
≥ 3 f

Ås
3

ã
from which the statement follows. Equality holds when a = b =
c =
√

3.

Solution 4 by Michel Bataille, Rouen, France. Let L denote the
left-hand side of the inequality and let s = a + b + c. From the
hypothesis, we deduce that

L =
a2

a+ s
+

b2

b+ s
+

c2

c+ s
= a−s+

s2

a+ s
+b−s+

s2

b+ s
+c−s+

s2

c+ s
,
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that is,

L = s2

Ç
1

a+ s
+

1

b+ s
+

1

c+ s

å
− 2s.

Now, from the convexity of x 7→ 1
x

on (0,∞), we have

1

a+ s
+

1

b+ s
+

1

c+ s
≥ 3 ·

1
s+3s

3

=
9

4s
,

hence

L ≥ s2 ·
9

4s
− 2s =

s

4
,

as required.

Solution 5 by Cao Minh Quang, Nguyen Binh Khiem High
School, Vinh Long, Vietnam. First, we rewrite the given inequal-
ity in the form:

12(a(b+ c) + b(c+ a) + c(a+ b)) ≤ (a+b+c)2(a+b)(b+c)(c+a)

or
24(ab+ bc+ ca) ≤ (a+ b+ c)2(a+ b)(b+ c)(c+ a)

By the AM-GM inequality, we obtain:

a+ b+ c ≥ 3
3
√
abc ≥ 3

We recall the well-known result from the paper A Nice Identity ([see
here](https://www.math.hkust.edu.hk/excalibur/v14-n1.pdf)):

(a+ b)(b+ c)(c+ a) ≥
8

9
(a+ b+ c)(ab+ bc+ ca)

Therefore

(a+ b+ c)2(a+ b)(b+ c)(c+ a) ≥
8

9
(a+ b+ c)3(ab+ bc+ ca)

≥ 24(ab+ bc+ ca).

Equality holds if and only if a = b = c = 1.
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E–134. Proposed by Michel Bataille, Rouen, France. Let n be a
nonnegative integer. Prove that

n∑
k=0

(
2n

2k

)
288k289n−k =

4n∑
k=0

(
8n

2k

)
2k.

Solution 1 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. By the binomial theorem,

(x+ y)2n =
2n∑
k=0

(
2n

k

)
xky2n−k

and

(x− y)2n =
2n∑
k=0

(
2n

k

)
xk(−y)2n−k,

so
n∑
k=0

(
2n

2k

)
x2ky2(n−k) =

1

2
((x+ y)2n + (x− y)2n)

and

n∑
k=0

(
2n

2k

)
288k289n−k =

n∑
k=0

(
2n

2k

)
(12
√

2)2k172(n−k)

=
1

2

(
(12
√

2 + 17)2n + (12
√

2− 17)2n
)

=
1

2

(
(17 + 12

√
2)2n + (17− 12

√
2)2n

)
.

On the other hand, again by the binomial theorem,

(1 + x)8n =
8n∑
k=0

(
8n

k

)
xk

and

(1− x)8n =
8n∑
k=0

(
8n

k

)
(−x)k,

so
4n∑
k=0

(
8n

2k

)
x2k =

1

2
((1 + x)8n + (1− x)8n)
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and

4n∑
k=0

(
8n

2k

)
2k =

4n∑
k=0

(
8n

2k

)
(
√

2)2k

=
1

2
((1 +

√
2)8n + (1−

√
2)8n)

=
1

2
((3 + 2

√
2)4n + (3− 2

√
2)4n)

=
1

2
((17 + 12

√
2)2n + (17− 12

√
2)2n).

Thus,
n∑
k=0

(
2n

2k

)
288k289n−k =

4n∑
k=0

(
8n

2k

)
2k.

Solution 2 by Michel Bataille, Rouen, France. The key remark
is the following: from the binomial theorem, we have

(a+ b)2m + (a− b)2m = 2
m∑
k=0

(
2m

2k

)
a2m−2kb2k.

From this identity, we deduce that

Sn =
4n∑
k=0

(
8n

2k

)
2k =

1

2

(
(1 +

√
2)8n + (1−

√
2)8n

)
.

Since (1±
√

2)4 = 17± 12
√

2, we see that

Sn =
1

2
((17+12

√
2)2n+(17−12

√
2)2n) =

n∑
k=0

(
2n

2k

)
172n−2k(12

√
2)2k

and therefore

Sn =
n∑
k=0

(
2n

2k

)
289n−k 288k.

Solution 3 by Albert Stadler, Herrliberg, Switzerland. We have,
by the binomial theorem,

n∑
k=0

Ç
2n
2k

å
288k289n−k =

2n∑
k=0

Ç
2n
k

å
1 + (−1)k

2

(√
288

)k
172n−k
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=
1

2

(
12
√

2 + 17
)2n

+
1

2

(
−12
√

2 + 17
)2n

=
1

2

(√
2 + 1

)8n
+

1

2

(
−
√

2 + 1
)8n

=
8n∑
k=0

Ç
8n
k

å
1 + (−1)k

2

(√
2
)k

=
4n∑
k=0

Ç
8n
2k

å
2k.

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.

E–135. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
a, b, n be integers such that 0 < a ≤ b < n. Prove that there exist

a prime p that divide both
(
n

a

)
and

(
n

b

)
.

Solution 1 by Michel Bataille, Rouen, France. We suppose that
0 < a < b < n (the result is obvious if a = b), so that n ≥ 3.
We remark that (

n

b

)(
b

a

)
=

(
n

a

)(
n− a
b− a

)

(both sides equal n!
a!(n−b)!(b−a)!

).

Also, we have
Ä
n

a

ä
>
Ä
b

a

ä
: indeed, this is equivalent to n!

b!
> (n−a)!

(b−a)!
,

that is, to n(n−1) · · · (b+1) > (n−a)(n−a−1) · · · (b+1−a), which
holds because n > n−a, n−1 > n−a−1, . . . , b+ 1 > b+ 1−a.
Now, from a theorem of Gauss, if the integers

Ä
n

a

ä
and

Ä
n

b

ä
were

coprime, then
Ä
n

a

ä
would divide

Ä
b

a

ä
, a contradiction since

Ä
n

a

ä
>
Ä
b

a

ä
.

Thus,
Ä
n

a

ä
and

Ä
n

b

ä
are not coprime, hence, being greater than 1,

they have a common prime divisor.

Solution 2 by the proposers. We argue by contradiction. Sup-

pose that
(
n

a

)
and

(
n

b

)
are relatively prime. We need the following

identity: (
n

b

)(
b

a

)
=

(
n

a

)(
n− a
b− a

)
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valid for 0 ≤ a ≤ b ≤ n. Indeed, suppose we have a class with

n students. Then we may choose
(
n

b

)
committees of b students

and for each b students we have
(
n

a

)
subcommittees with a girls.

Thus, the total number of students may be counted (committed) in
two ways: (

n

b

)(
b

a

)
=

(
n

a

)(
n− a
b− a

)
.

From the preceding, we get that(
n

a

) ∣∣∣∣
(
n

b

)(
b

a

)
.

But since
(
n

a

)
and

(
n

b

)
are coprime, it follows that

(
n

a

)
divides(

b

a

)
which is impossible because it is clear that

(
b

a

)
<

(
n

a

)
. Thus,

GCD

((
n

a

)
,

(
n

b

))
> 1,

and we are done.

E–136. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
` be a line that divides triangle ABC into two parts. Prove that `
divides the area and the perimeter of ABC in the same proportion
if and only if ` passes through the incenter of triangle ABC .

Solution 1 by the proposers. ⇒) We first assume that ` divides
the area and the perimeter of 4ABC in the same ratio. Using the
standard notation the ratio of areas is

[EBCD]

[AED]
=

[ABC]− [AED]

[AED]
=

[ABC]

[AED]
− 1

while the ratio of perimeters is

EB +BC + CD

DA+AE
=

(c− c′) + a+ (b− b′)
b′ + c′
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r

a

b-b'

c-c'

b'
c'

D

E
I

C
B

A

Scheme for solving problem E-136.

The right-hand sides are equal when

[ABC]

[AED]
= 1 +

(c− c′) + a+ (b− b′)
b′ + c′

=
a+ b+ c

b′ + c′

from which it follows

[AED] =
b′ + c′

a+ b+ c
[ABC] =

b′ + c′

a+ b+ c
· (a+ b+ c)

r

2
= (b′+ c′)

r

2

We want to prove that I lies on DE . To this end we let the bisector
of ∠BAC meet DE at F. The perpendicular distances from F to
AC and AE have the same value, say d. Therefore,

[AED] = [AEF ] + [AFD] =
c′d

2
+
b′d

2
= (b′ + c′)

d

2

Equating both expressions for [AED] we get d = r. Because I is
the unique point on the angle bisector AI at a distance of r from
AB and AC , it follows that F coincides with I , whence I lies on
DE as claimed.

⇐) For the converse we are given that I lies on DE . We start the
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chain of equalities with the ratio of areas,

[EBCD]

[AED]
=

[ABC]− [AED]

[AED]

=

r

2
· (a+ b+ c)− ([AEI] + [AID])

[AEI] + [AID]

=

r

2
· (a+ b+ c)−

Å
b′ ·

r

2
+ c′ ·

r

2

ã
b′ ·

r

2
+ c′ ·

r

2

=
(c− c′) + a+ (b− b′)

b′ + c′
=
EB +BC + CD

DA+AE
,

and end with the ratio of the two pieces of the perimeter. That is,
the two ratios are equal as desired.

Solution 2 by Miquel Amengual Covas, Cala Figuera, Mallorca,
Spain. We may assume without loss of generality that ` intersects
the sides AB and AC at P and Q, respectively.

We set a = BC , b = CA, c = AB , x = AP , and y = AQ. Let I
denotes the incenter of 4ABC .

B C

A

I
P

Q
x

b− y
c− x

y

a

From [1], we have that PQ passes through I if and only if

bc

Ç
1

x
+

1

y

å
= a+ b+ c

or, equivalently,
bc

xy
=
a+ b+ c

x+ y
. (1)
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Let us agree to denote the area of any figure by the name of the
figure enclosed in brackets. Since the area of a triangle is equal to
one-half the product of the length of two of the sides and the sinus
of their included angle, equation (1) may therefore be written as

[ABC]

[APQ]
=
a+ b+ c

x+ y

Subtracting 1 from each side gives

[PBCQ]

[APQ]
=
a+ b+ c− x− y

x+ y
=

(c− x) + a+ (b− y)

x+ y

=
PB +BC + CQ

AP +AQ
,

and the conclusion follows.

REFERENCE.

[1] The Olympiad Corner No. 250, Crux Mathematicorum, Vol. 31,
No. 8, December 2005, pp. 534-36.

Solution 3 by Michel Bataille, Rouen, France. Without loss of
generality we suppose that ` intersects the sides AC and AB in
D and E , respectively. We set BC = a,CA = b,AB = c,AD =
d,AE = e and use barycentric coordinates relatively to (A,B,C).
Let I = (a : b : c) be the incenter of ABC .
Since D = ((b− d) : 0 : d) and E = (c− e : e : 0), the equation of
` = DE is dex− d(c− e)y− e(b− d)z = 0, hence I is on the line
` if and only if dea− d(c− e)b− e(b− d)c = 0, that is,

a+ b+ c

bc
=
d+ e

de
. (1)

Let [·] denote area. We have 2[ABC] = bc sinA and 2[ADE] =

de sinA, hence
[ADE]

[ABC]
=
de

bc
The line ` divides the perimeter of

ABC in the ratio
d+ e

a+ b+ c
. Thus, ` divides the area and the

perimeter in the same proportion if and only
de

bc
=

d+ e

a+ b+ c
, that

is, if and only if (1) holds, or if and only if ` passes through I .
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Easy–Medium Problems

EM–131. Proposed by Michel Bataille, Rouen, France. Let ABC
be a triangle neither equilateral nor right-angled and let O be
its circumcentre. Let A′, B′, C′ be the respective reflections of
A,B,C about O and let U, V, and W be the circumcentres of
∆OB′C′,∆OC′A′, and ∆OA′B′ , respectively. Prove that the lines
AU,BV,CW are concurrent.

Solution by the proposer. We embed the problem in the complex
plane and without loos of generality we suppose that the circum-
circle of ∆ABC is the unit circle Γ (centre O , radius 1). We
denote by m (lower-case letter) the affix of the point M (upper-
case letter). With these notations, we have |a| = |b| = |c| = 1
and a′ = −a, b′ = −b, c′ = −c. From the definition of U , we have
|u|2 = |u− b′|2 = |u− c′|2 , that is, |u|2 = |u+ b|2 = |u+ c|2 . Since
b = 1

b
and c = 1

c
, we obtain

uu = (u+ b)

Ç
u+

1

b

å
= (u+ c)

Ç
u+

1

c

å
and readily deduce that u = −bc

b+c
(and u = −1

b+c
).

Now, let the line AU intersect Γ at D (D 6= A). The equation of
the line AD = AU is z + adz = a+ d with u+ adu = a+ d. We

deduce that d = −
ab+ bc+ ca

a+ b+ c
(note that a + b + c 6= 0 since

∆ABC is not equilateral). This affix d does not change when a, b, c
are permuted, hence D is also on BV and CW and we conclude
that AU,BV,CW are concurrent (and their common point is on
circle Γ).

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.

EM–132. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
a, b be positive integers such that (a, b) = d. Prove that

ϕ(d)

d
≤

1

2

(
ϕ2(a) + ϕ2(b)

ϕ(ab)

)
,
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where ϕ(n) is the Euler’s totient function.

Solution 1 by Michel Bataille, Rouen, France. If d = 1, then
ϕ(ab) = ϕ(a)ϕ(b) and ϕ(d) = 1, hence the inequality writes as
(ϕ(a)− ϕ(b))2 ≥ 0, which clearly holds.
Suppose now that d > 1 and let {p1, p2, . . . , pk} denote the set of
all the prime divisors of d. The integers a, b, d then write as

a = pr11 · · · p
rk
k · a1, b = ps11 · · · p

sk
k · b1, d = pu1

1 · · · p
uk
k

where a1, b1 and ri, si, ui = min(ri, si) (i = 1, . . . , k)) are positive
integers, none of p1, . . . , pk dividing a1 or b1 . Note also that a1

and b1 are coprime (a common prime factor would divide d, hence
be among p1, . . . , pk ) and that the least common multiple of a and
b is m = pv11 · · · p

vk
k · a1b1 where vi = max(ri, si) (i = 1, . . . , k).

Using well-known results about ϕ and setting h =
k∏
i=1

(
1− 1

pi

)
, we

obtain

ϕ(a) = hϕ(a1)
k∏
i=1

prii , ϕ(b) = hϕ(b1)
k∏
i=1

psii , ϕ(d) = h
k∏
i=1

puii ,

ϕ(m) = hϕ(a1)ϕ(b1)
k∏
i=1

pvii , ϕ(ab) = hϕ(a1)ϕ(b1)
k∏
i=1

pri+sii .

Using ri + si = ui + vi (i = 1, . . . , k), we readily deduce that

ϕ(a)ϕ(b) = ϕ(m)ϕ(d), ϕ(ab) = dϕ(m).

Since ϕ2(a) + ϕ2(b) ≥ 2ϕ(a)ϕ(b), it follows that

1

2

(
ϕ2(a) + ϕ2(b)

ϕ(ab)

)
≥
ϕ(a)ϕ(b)

ϕ(ab)
=
ϕ(d)ϕ(m)

dϕ(m)
=
ϕ(d)

d
,

as desired.

Solution 2 by Ricardo, Westchester Area Math Circle, Pur-
chase, New York, USA. Each prime divisor of ab is either a prime
divisor of a or a prime divisor of b—or possibly a prime divisor of
both a and b, Thus

ϕ(ab)

ab
=

∏
p|ab

Ç
1−

1

p

å
=

∏
p|a
(
1− 1

p

)∏
p|b
(
1− 1

p

)
∏
p|(a,b)

(
1− 1

p

) =
ϕ(a)

a

ϕ(b)

b
ϕ(d)

d

.
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It follows that
ϕ(d)

d
=

ϕ(a)ϕ(b)

ϕ(ab)
,

and so, applying the Power Mean inequality (GM ≤ QM ), we see
that

ϕ(d)

d
=

ϕ(a)ϕ(b)

ϕ(ab)
≤

ϕ2(a)+ϕ2(b)

2

ϕ(ab)
=

1

2

(
ϕ2(a) + ϕ2(b)

ϕ(ab)

)
.

Equality holds if and only if ϕ(a) = ϕ(b).

Solution 3 by the proposers. Since (a, b) = d, then there exist
two positive integers m,n such that a = dm, b = dn, where
(m,n) = 1. Let d =

∏
k

pαkk . Then

ab = mn
∏
k

p2αk
k

and

ϕ(ab) = ϕ(mn)
∏
k

ϕ(p2αk
k ) = ϕ(mn)

∏
k

Ä
p2αk−1

ä
(pk − 1)

On the other hand,

ϕ(a)ϕ(b) = ϕ(m)ϕ

(∏
k

pαkk

)
ϕ(n)ϕ

(∏
k

pαkk

)

= ϕ(m)ϕ(n)

(∏
k

pαk−1
k (pk − 1)

)2

= ϕ(m)ϕ(n)
∏
k

p2αk−1
k

(pk − 1)2

pk

= ϕ(ab)
∏
k

Ç
1−

1

pk

å
=
ϕ(ab)ϕ(d)

d

Taking into account GM-QM inequality, we have√
ϕ(ab)ϕ(d)

d
=
»
ϕ(a)ϕ(b) ≤

√
ϕ2(a) + ϕ2(b)

2
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and
ϕ(ab)

ϕ2(a) + ϕ2(b)
≤

d

2ϕ(d)

from which after inverting terms the statement follows. Equality
holds when d = (a, b) = 1 and ϕ(a) = ϕ(b).

Also solved by Albert Stadler, Herrliberg, Switzerland.

EM–133. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find all real solutions of the equation:
√
x+ 3
√
x+ 4
√
x+ 5
√
x+ . . .+ 2024

√
x = 2025

»
x+ 20242025 − 1

Solution by the proposer. Denoting by f(x) = 3
√
x+ 4
√
x+ 5
√
x+

. . .+ 2024
√
x the equation claimed may be written as

√
x+ f(x) = 2025

»
x+ 20242025 − 1.

Raising to 2025 both terms of the above expression, yields

x2025/2 +
2025∑
k=1

(
2025

k

)
√
x

2025−k
fk(x) = x+ 20242025 − 1

It is obvious that x ≥ 0. So, we consider two cases:

1. If x < 1 then x2025/2 < x. Let g : (0, 1) → R be the function
defined by

g(x) =
2025∑
k=1

(
2025

k

)
√
x

2025−k
fk(x).

We observe that f(1) = 2023 and g(x) < g(1), as can be easily
checked. That is,

g(x) < g(1) =
2025∑
k=1

(
2025

k

)
fk(1) =

2025∑
k=1

(
2025

k

)
2023k = 20242025−1

on account of the above. Therefore, for x < 1 holds

x2025/2 +
2025∑
k=1

(
2025

k

)
√
x

2025−k
fk(x) < x+ 20242025 − 1
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2. If x > 1 then x2025/2 > x and g(x) > g(1). Then, holds

x2025/2 +
2025∑
k=1

(
2025

k

)
√
x

2025−k
fk(x) > x+ 20242025 − 1

From the preceding we conclude that

x2025/2 +
2025∑
k=1

(
2025

k

)
√
x

2025−k
fk(x) = x+ 20242025 − 1

holds only when x = 1 which is the unique solution of the equation
given in the statement.

Also solved by José Gibergans-Báguena, BarcelonaTech, Terrassa,
Spain.

EM–134. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a non-right triangle with AB 6= AC and let H be its
orthocenter, G be its centroid, K be its symmedian point. Let
Hb,Hc be the feet of the altitudes drawn from B,C respectively.
Let M,E be the midpoints of BC,HbHc respectively and let D
be the foot of the perpendicular from M to the line GH . Let
K1 = AK ∩ BC . Knowing that G lies on HbHc , prove that the
points M,D,E,K1 are concyclic.

Solution 1 by the proposer. Let ω be the circle with diameter
GM . Since DM ⊥ GH , hence ∠MDG = 90◦ and D ∈ ω .

Since ∠BHbC = ∠BHcC = 90◦ , the points Hb,Hc lie on the circle
with diameter BC , centered at M , so MHb = MHc . ME is a
median in 4MHbHc and so ME ⊥ HbHc and since G ∈ HbHc ,
hence ∠MEG = 90◦, E ∈ ω .

The centroid G and the symmedian point K are isogonal conju-
gates, so ∠BAK = ∠CAG.

It is well-known that ∠ABC = ∠AHbHc and 4ABC ∼ 4AHbHC .
Let S be the transformation consisting of a homothety centered
at A, followed by a reflection with respect to the internal angle
bisector of angle ∠BAC , sending HbHc to BC . Then, S : E →M
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Scheme for Solution of EM-134.

as midpoints and S : AE → AM , S : 4AEHc → 4AMC or
∠EAHc = ∠MAC so E ∈ AK .

Now S : AG → AK1 , S : G → K1 . Hence S : 4AEG →
4AMK1 or 4AEG ∼ 4AMK1 . So ∠AGE = ∠AK1M ≡
∠EK1M and ∠EK1M +∠EGM = ∠AK1M + (180◦−∠AGE) =
180◦ . Hence the points G,E,K1,M lie on circle ω .

It follows that the points D,E,G,K1,M are concyclic.

Solution 2 by Michel Bataille, Rouen, France. Let a = BC, b =
CA, c = AB as usual. In barycentric coordinates relatively to
(A,B,C), we have

M = (0 : 1 : 1), G = (1 : 1 : 1), K = (a2 : b2 : c2), K1 = (0 : b2 : c2),

and H = (SBSC : SCSA : SASB) where SA = b2+c2−a2

2
SB =

c2+a2−b2
2

, SC = a2+b2−c2
2

. For later use, note that SA is the dot
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Scheme for solving problem EM-134.

product
−→
AB ·

−→
AC .

We deduce that Hb = (SC : 0 : SA),Hc = (SB : SA : 0) so that the
equation of the line HbHc is xSA−ySB−zSC = 0. Expressing that
G is on this line gives SA = SB + SC = a2 , hence 3a2 = b2 + c2 .
Taking this into account, we obtain

2b2c2E = (b2c2)(Hb +Hc) = c2(b2Hb) + b2(c2Hc)

= (c2SC + b2SB)A+ (b2SA)B + (c2SA)C

= mA+ a2b2B + a2c2C

where we have set m = b2SB + c2SC .
Now, from 3a2K1 = b2B + c2C and 3a2G = a2A+ a2B + a2C , we
obtain 3a2−−→K1G = (a2 − b2)

−→
AB + (a2 − c2)

−→
AC so that

3a2−−→K1G ·
−−→
CB = ((a2 − b2)

−→
AB + (a2 − c2)

−→
AC) · (

−→
AB −

−→
AC).

Since
−→
AB2 = c2,

−→
AC2 = b2 and

−→
AB ·

−→
AC = SA = a2 , a simple

calculation gives
−−→
K1G ·

−−→
CB = 0. Therefore GK1 ⊥ K1M and K1

is on the circle Γ with diameter GM . Since MD ⊥ DG, D is also
on this circle. Thus, it just remains to show that E is on Γ, that
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is, GE ⊥ EM .
Similarly, from 6b2c2E = 3mA + 3a2b2B + 3a2c2C , 6b2c2M =
3b2c2B + 3b2c2C and 6b2c2G = 2b2c2A+ 2b2c2B + 2b2c2C , we get
6b2c2−−→EM = 3b2(c2 − a2)

−→
AB + 3c2(b2 − a2)

−→
AC and 6b2c2−→GE =

(b2− c2)(b2−→AB− c2−→AC). Again, by a simple calculation, we obtain
−→
GE ·

−−→
EM = 0, that is, GE ⊥ EM .

EM–135. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Com-
pute the value of

cos

Ç
2π

17

å
cos

Ç
4π

17

å
cos

Ç
6π

17

å
. . . cos

Ç
16π

17

å
.

Solution 1 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. With

cos

Ç
10π

17

å
= − cos

Ç
7π

17

å
, cos

Ç
12π

17

å
= − cos

Ç
5π

17

å
,

cos

Ç
14π

17

å
= − cos

Ç
3π

17

å
, and cos

Ç
16π

17

å
= − cos

Å π
17

ã
,

the desired product is equal to

8∏
k=1

cos

Ç
kπ

17

å
.

Now, let n be a positive integer, and let ωn = ei(2π/n) . Then

1 + z + z2 + · · ·+ zn−1 =
zn − 1

z − 1
=

n−1∏
k=1

(z − ωkn).

Substituting z = −1 and taking the modulus of both sides yields

1− (−1)n

2
=

n−1∏
k=1

|1 + ωkn|.

But,

1 + ωkn = 1 + ei(2πk/n) =
Ä
e−i(kπ/n) + ei(kπ/n)

ä
ei(kπ/n)
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= 2 cos

Ç
kπ

n

å
ei(kπ/n),

so

|1 + ωkn| = 2

∣∣∣∣∣cos

Ç
kπ

n

å∣∣∣∣∣
and

n−1∏
k=1

∣∣∣∣∣cos

Ç
kπ

n

å∣∣∣∣∣ =
1− (−1)n

2n
.

If n is an odd integer, n = 2m+ 1, then

2m∏
k=1

∣∣∣∣∣cos

Ç
kπ

2m+ 1

å∣∣∣∣∣ =
1

22m
.

Because

cos

Ç
kπ

2m+ 1

å
> 0 for 1 ≤ k ≤ m,

and

cos

Ç
(2m+ 1− k)π

2m+ 1

å
= − cos

Ç
kπ

2m+ 1

å
,

it follows that
m∏
k=1

cos

Ç
kπ

2m+ 1

å
=

1

2m
.

Finally,

cos

Ç
2π

17

å
cos

Ç
4π

17

å
cos

Ç
6π

17

å
· · · cos

Ç
16π

17

å
=

8∏
k=1

cos

(
kπ

2(8) + 1

)

=
1

28
=

1

256
.

Solution 2 by Michel Bataille, Rouen, France. Let P denote
the required product. We show that P = 1

256
.

Since cosx = − cos y if x+ y = π , we have

cos

Ç
10π

17

å
cos

Ç
12π

17

å
cos

Ç
14π

17

å
cos

Ç
16π

17

å
= cos

Ç
7π

17

å
cos

Ç
5π

17

å
cos

Ç
3π

17

å
cos

Å π
17

ã
,
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hence P = Q ·R where

Q = cos
Å π

17

ã
cos

Ç
2π

17

å
cos

Ç
4π

17

å
cos

Ç
8π

17

å
and

R = cos

Ç
3π

17

å
cos

Ç
5π

17

å
cos

Ç
6π

17

å
cos

Ç
7π

17

å
.

Now, since sin a cos a = 1
2

sin(2a) and sin(π − x) = sinx, we haveÅ
sin

Å π
17

ãã
Q =

1

2
sin

Ç
2π

17

å
cos

Ç
2π

17

å
cos

Ç
4π

17

å
cos

Ç
8π

17

å
=

1

4
sin

Ç
4π

17

å
cos

Ç
4π

17

å
cos

Ç
8π

17

å
=

1

8
sin

Ç
8π

17

å
cos

Ç
8π

17

å
=

1

16
sin

Ç
16π

17

å
=

1

16
sin

Å π
17

ã
so that Q = 1

16
(since sin

Ä
π
17

ä
6= 0).

In a similar way, we obtainÇ
sin

Ç
3π

17

åå
R =

1

2
sin

Ç
6π

17

å
cos

Ç
6π

17

å
cos

Ç
5π

17

å
cos

Ç
7π

17

å
=

1

4
sin

Ç
12π

17

å
cos

Ç
5π

17

å
cos

Ç
7π

17

å
=

1

4
sin

Ç
5π

17

å
cos

Ç
5π

17

å
cos

Ç
7π

17

å
=

1

8
sin

Ç
10π

17

å
cos

Ç
7π

17

å
=

1

16
sin

Ç
14π

17

å
=

1

16
sin

Ç
3π

17

å
and R =

1

16
follows. We conclude that P =

1

16
·

1

16
=

1

256
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland. We start
with the identity

n∏
k=1

(
1− xe2πik

n

)
= 1− xn,
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which holds true, since both sides are polynomials with the same
set of zeros and the same constant coefficient. So they must be
identical. If n is odd then

n∏
k=1

(
1− x2e

4πik
n

)
=

n∏
k=1

(
1− xe2πik

n

) n∏
k=1

(
1 + xe

2πik
n

)

= (1− xn)(1 + xn) =
Ä
1− x2n

ä
.

We set x = i and find

n−1∏
k=1

(
1 + e

4πik
n

)
= 1.

We note that cos
Ä

2πk
17

ä
> 0, k = 1, 2, 3, 4, and cos

Ä
2πk
17

ä
< 0, k =

5, 6, 7, 8, and cos
Ä

2πk
17

ä
= cos

(
2π(17−k)

17

)
.

Hence

cos
Ä

2π
17

ä
cos

Ä
4π
17

ä
cos

Ä
6π
17

ä
cos

Ä
8π
17

ä
cos

Ä
10π
17

ä
cos

Ä
12π
17

ä
cos

Ä
14π
17

ä
cos

Ä
16π
17

ä
>

0 and

cos

Å
2π

17

ã
cos

Å
4π

17

ã
cos

Å
6π

17

ã
cos

Å
8π

17

ã
cos

Å
10π

17

ã
cos

Å
12π

17

ã
cos

Å
14π

17

ã
cos

Å
16π

17

ã
=

Ã
16∏
k=1

cos

Ç
2πk

17

å
=

Õ
16∏
k=1

Ñ
e

2πik
17 + e−

2πik
17

2

é
=

1

256

Ã
e−

∑16
k=1

2πik
17

16∏
k=1

(
1 + e

4πik
17

)
=

1

256
.

Also solved by Arkady Alt, San Jose, California, USA; Henry Ri-
cardo, Westchester Area Math Circle, Purchase, New York, USA;
Sarah B. Seales Arizona State University, USA, and the proposers.

EM–136. Proposed by Michel Bataille, Rouen, France. Let a, b,
and c be positive real numbers such that abc ≥ 1. Prove that

a

(a+ b)(a+ c)
+

b

(b+ c)(b+ a)
+

c

(c+ a)(c+ b)
≤

(a+ b+ c)2

12
.
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Solution 1 by Michel Bataille, Rouen, France. It suffices to
show that for all a, b, c > 0,

abc

(
a

(a+ b)(a+ c)
+

b

(b+ c)(b+ a)
+

c

(c+ a)(c+ b)

)
≤

(a+ b+ c)2

12
.

By homogeneity, we may suppose that a + b + c = 1. Then the
above inequality becomes

12abc(a(1− a) + b(1− b) + c(1− c)) ≤ (1− a)(1− b)(1− c)

or

24abc(ab+ bc+ ca) ≤ ab+ bc+ ca− abc.

(since a2+b2+c2 = (a+b+c)2−2(ab+bc+ca) = 1−2(ab+bc+ca)).

Recalling that abc ≤ (a+b+c)3

27
= 1

27
, it is sufficient to prove that

8(ab+ bc+ ca) ≤ 9(ab+ bc+ ca− abc),

that is,

9 ≤
1

a
+

1

b
+

1

c
.

We are done since by the Cauchy-Schwartz inequality, we have

1

a
+

1

b
+

1

c
=

Ç
1

a
+

1

b
+

1

c

å
(a+ b+ c) ≥ (1 + 1 + 1)2 = 9.

Solution 2 by Ioan Viorel Codreanu, Satulung, Maramures, Ro-
mania. We have

∑ a

(a+ b)(a+ c)
≤
∑ a

2
√
ab · 2

√
ac

=
1

4

∑ 1
√
b ·
√
c
≤

1

4

∑ 1

a

=
1

4
·
∑
ab∏
a
≤
∑
ab

4
≤

(
∑
a)2

12
.

Solution 3 by Henry Ricardo, Westchester Area Math Circle,
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Purchase, New York, USA. We have

∑
cyclic

a

(a+ b)(a+ c)

AGM
≤

∑
cyclic

a

2
√
ab · 2

√
ac

=
1

4

∑
cyclic

√
bc

bc

=
1

4abc

∑
cyclic

a
√
bc

AGM
≤

1

4

∑
cyclic

a

Ç
b+ c

2

å
=

1

4
(ab+ bc+ ca)

M
≤

(a+ b+ c)2

12
.

Equality holds if and only if a = b = c = 1.

Solution 4 by Sarah B. Seales, Arizona State University, USA.
We have

a

(a+ b)(a+ c)
+

b

(b+ c)(b+ a)
+

c

(c+ a)(c+ b)
=

2(ab+ bc+ ca)

(a+ b)(b+ c)(c+ b)

so it’s enough to show

2(ab+ bc+ ca)

(a+ b)(b+ c)(c+ b)
≤

(a+ b+ c)2

12
.

Since (a + b)(b + c)(c + a) ≥ 8abc ≥ 8 from AM-GM and the
given condition, we need to show 1

4
(ab+ bc+ ca) ≤ (a+b+c)2

12
, which

simplifies to
3(ab+ bc+ ca) ≤ (a+ b+ c)2.

This is equivalent to

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0,

which is true by the trivial inequality.
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Solution 5 by Albert Stadler, Herrliberg, Switzerland. We have

(a+ b+ c)2

12
−

a

(a+ b)(a+ c)
−

b

(b+ c)(b+ a)
−

c

(c+ a)(c+ b)

≥
(a+ b+ c)2

12abc
−

a

(a+ b)(a+ c)
−

b

(b+ c)(b+ a)
−

c

(c+ a)(c+ b)

=

∑
symm

a4b+ 3
∑

symm

a3b2 + 3
∑

symm

a3bc− 7
∑

symm

a2b2c

12abc(a+ b)(b+ c)(c+ a)
≥ 0,

since by Muirhead’s inequality∑
symm

a4b ≥
∑

symm

a2b2c,
∑

symm

a3b2 ≥
∑

symm

a2b2c,
∑

symm

a3bc ≥
∑

symm

a2b2c.

Also solved by Arkady Alt, San Jose, California, USA, and Cao
Minh Quang, Nguyen Binh Khiem High School, Vinh Long, Vietnam.
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Medium–Hard Problems

MH–131. Proposed by Miquel Amengual Covas, Cala Figuera,
Mallorca, Spain. On the sides AB , BC , CA of a triangle ABC
points C′ , A′ , B′ are marked respectively. It turns out that

AC′

AB
=
BA′

BC
=
CB′

CA
=

1

3
.

Prove that:

1. The sides of 4A′B′C′ are parallel to the medians of 4ABC
and 2

3
as the length of the correspondent median.

2. Each of the sides of 4A′B′C′ is trisected by two medians of
4ABC .

3. Each of the medians of 4A′B′C′ is parallel to a side of
4ABC .

Solution 1 by the proposer. Let M , N be the midpoints of sides
BC , CA, respectively.

1. Since A′M = BM − A′M = 1
2
BC − 1

3
BC = 1

6
BC , we have

(FIGURE 1).

BA′

A′M
=
BA′

BC
·
BC

A′M
=

1

3
×6 = 2 = (since C′ trisects AB) =

BC′

C′A
.

By the Thales’s theorem, it follows that A′C′ is parallel to
AM .
Consequently, triangles BA′C′ and BMA are similar. From
the proportional sides, then,

C′A′

AM
=
BA′

BM
=
BA′/BC

BM/BC
=

1/3

1/2
=

2

3

and

C′A′ =
2

3
AM.
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FIGURE 1

B C

A

A′ M

B′

U

C′

2. Let {U} = AM ∩A′B′ . By the Menelaus’s theorem, applied
to 4A′CB′ and transversal AUM ,

A′M

MC
·
CA

AB′
·
B′U

UA′
= 1,

where
A′M

MC
=
A′M/BC

MC/BC
=

1/6

1/2
=

1

3
and

CA

AB′
= 3

2
. There-

fore,
B′U

UA′
= 2. That is,

B′U = 2 · UA′. (1)
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Let {V } = CN ∩A′B′ and let {X} = CN ∩AA′ . (FIGURE 2).

FIGURE 2

P

X

B C

A

A′

B′
N

V

U

If P denotes the point of median CN such that AP is parallel
to BC , triangles APX and A′CX are similar (angle-angle-
angle).
In turn, triangles APN and BCN are congruent (they are
similar with AN = NB ).
Thus, AP = BC . This yields

AX

XA′
=
AP

A′C
=
AP

BC
·
BC

A′C
= 1×

3

2
=

3

2
.

By the Menelaus’s theorem, applied to 4AA′B′ and transver-
sal XV C ,

AX

XA′
·
A′V

V B′
·
B′C

CA
= 1,

and therefore,
3

2
·
A′V

V B′
·

1

3
= 1,

yielding
A′V = 2 · V B′. (2)

By (1) and (2),
A′U = UV = V B′.

3. Let B′′ ( 6= B′) trisect the side CA of 4ABC and let {Q} =
A′B′′ ∩B′C′ (FIGURE 3).
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Since
AB′′

BA′
=

( 1
3
CA

1
3
BC

)
=
B′′B′

A′A′′
,

we have A′B′′ ‖ AB .
That is,

A′Q ‖ AB.

FIGURE 3

B C

A

A′ A′′

B′

B′′
C′

Q

Since AB′′ = B′′B′ , we also have C′Q = QB′ , making A′Q
the median to B′C′ in 4A′B′C′ , which we have just seen is
parallel to side AB of 4ABC .
Analogously, the median from B′ in 4A′B′C′ is parallel to
BC and the median from C′ is parallel to CA.

Solution 2 by Michel Bataille, Rouen, France. We have 3
−−→
AC′ =

−→
AB, 3

−−→
BA′ =

−−→
BC, 3

−−→
CB′ =

−→
CA, that is, 3A′ = 2B + C, 3B′ =

2C +A, 3C′ = 2A+B , or, in barycentric coordinates relatively to
(A,B,C),

A′ = (0 : 2 : 1), B′ = (1 : 0 : 2), C′ = (2 : 1 : 0).

1. Let D = (0 : 1 : 1), E = (1 : 0 : 1), F = (1 : 1 : 0) denote the
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midpoints of BC,CA,AB , respectively. Then, we obtain

3
−−→
C′A′ = 3A′ − 3C′ = −2A+B + C =

−→
AB +

−→
AC = 2

−−→
AD

hence
−−→
C′A′ = 2

3

−−→
AD , proving that C′A′ is parallel to the median

AD and that C′A′ = 2
3
AD .

Similarly, A′B′ ‖ BE with A′B′ = 2
3
BE and B′C′ ‖ CF with

B′C′ = 2
3
CF .

2. The equations of the medians AD and BE are y = z and x = z ,
respectively, and the equation of the line B′C′ is 2x− 4y − z = 0.
It follows that B′C′ intersect AD at L = (5 : 2 : 2) and BE at
M = (4 : 1 : 4). Now,

9
−−→
C′L = 5A+2B+2C−6A−3B = −A−B+2C = 3B′−3C′ = 3

−−→
C′B′,

hence
−−→
C′L = 1

3

−−→
C′B′ . A similar calculation shows that

−−−→
B′M =

1
3

−−→
B′C′ and therefore the segment B′C′ is trisected by the medians
AD and BE . Cyclically, we see that the sides C′A′ and A′B′ are
also trisected by two medians of ∆A′B′C′ .

3. Let U, V,W be the midpoints of B′C′, C′A′, A′B′ , respectively.
We have 6U = 3B′ + 3C′ = 3A + B + 2C and 6A′ = 4B + 2C ,
hence

6
−−→
A′U = 6U − 6A′ = 3A− 3B = 3

−→
BA,

that is,
−−→
A′U = 1

2

−→
BA and therefore the median A′U is parallel to

AB . Similarly (or cyclically), we see that B′V is parallel to BC
and C′W is parallel to CA.

Also solved by Adil Allahveranov, Baku, Azerbaijan.

MH–132. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let Sn denote the set of all permutations of {1, 2, . . . , n}. Show
that the number

N =
3

n!

∑
σ∈Sn

n∑
k=1

|k − σ(k)|

is an integer number and determine its value.
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Solution 1 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. For each i, j ∈ {1, 2, . . . , n}, there are
(n−1)! permutations in Sn such that σ(i) = j . Moreover, for each
j ∈ {1, 2, . . . , n − 1}, there are 2(n − j) ordered pairs (k, σ(k))
such that |k − σ(k)| = j . Thus,

∑
σ∈Sn

n∑
k=1

= 2(n− 1)!
n−1∑
j=1

j(n− j)

= 2(n− 1)!

Ñ
n
n−1∑
j=1

j −
n−1∑
j=1

j2

é
= n!(n− 1)

Ç
n−

2n− 1

3

å
=
n!

3
(n2 − 1),

and

N =
3

n!

∑
σ∈Sn

n∑
k=1

|k − σ(k)| = n2 − 1,

which is an integer number.

Solution 2 by Michel Bataille, Rouen, France. We claim N =
n2−1. In fact, let S(n) =

∑
σ∈Sn

∑n
k=1 |k−σ(k)| = ∑n

k=1

∑
σ∈Sn |k−

σ(k)|. The claim will follow if we prove that

S(n) =
n!(n2 − 1)

3
.

Let k and j be integers of {1, 2, . . . , n}. There exist (n − 1)!
elements of Sn such that σ(k) = j (as many as bijections from
{1, 2, . . . , n} − {k} onto {1, 2, . . . , n} − {j}), hence

∑
σ∈Sn
|k − σ(k)| = (n− 1)!

n∑
j=1

|k − j| = (n− 1)!

Ñ
k−1∑
j=1

j +
n−k∑
j=1

j

é
= (n− 1)!

Ç
(k − 1)k

2
+

(n− k)(n− k + 1)

2

å
.
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As a result, we have

S(n) = (n− 1)!

(
n∑
k=1

(k − 1)k

2
+

n∑
k=1

(n− k)(n− k + 1)

2

)

= (n− 1)!

(
n∑
k=1

(k − 1)k

2
+

n∑
`=1

(`− 1)`

2

)

= (n− 1)!
n∑
k=1

(k2 − k) = (n− 1)!

Ç
n(n+ 1)(2n+ 1)

6
−
n(n+ 1)

2

å
= (n− 1)! ·

n(n+ 1)(n− 1)

3
=
n!(n2 − 1)

3

and we are done.

Solution 3 by José Gibergans-Báguena, BarcelonaTech, Ter-
rassa, Spain. Reversing the sum gives

N =
3

n!

∑
σ∈Sn

n∑
k=1

|k − σ(k)| =
3

n!

n∑
k=1

∑
σ∈Sn
|k − σ(k)|

Now, consider k fixed. For each j ∈ {1, 2, . . . , n} observe that
σ(k) = j for exactly (n− 1)! permutations of Sn . That is,

N =
3

n!

n∑
k=1

∑
σ∈Sn
|k−σ(k)| =

3

n!

n∑
k=1

n∑
j=1

(n−1)!|k−j| =
3

n

n∑
k=1

n∑
j=1

|k−j|

Notice that the j = k terms are 0 and

N =
3

n

∑
1≤j≤k≤n

|k − j|+
3

n

∑
1≤k≤j≤n

|k − j|

=
6

n

∑
1≤j≤k≤n

(k − j) =
6

n

n∑
k=1

k∑
j=1

(k − j)

Then,

N =
6

n

n∑
k=1

Ç
k2 −

k(k + 1)

2

å
=

6

n

n∑
k=1

(k2 − k)

=
3

n

Ç
n(n+ 1)(2n+ 1)

6
−
n(n+ 1)

2

å
= n2 − 1.

Also solved by the proposer.
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MH–133. Proposed by Titu Zvonaru, Comănesţi, Romania. Let
a, b, c be positive real numbers such that ab+ bc+ ca = 3. Find
the greatest k such that the following inequality holds:

a2 + b2

a+ b+ 2
+

b2 + c2

b+ c+ 2
+

c2 + a2

c+ a+ 2
≥
k

4
(a+ b+ c)−

(3k − 6)

4
.

Solution by the proposer. Since ab + bc + ca = 3, we have
a+ b+ c ≥ 3. It is easy to see that if the inequality is true for k0 ,
then it is true for any k < k0 .

Clearing the denominators, the inequality is equivalent to

(8− k)
∑
cyc
a3b+ (8− k)

∑
cyc
ab3 + 2(8− k)

∑
cyc
a3 − 2(k − 4)

∑
cyc
a2b2

−4(k − 2)
∑
cyc
a2bc− (5k − 18)

∑
cyc
a2b− (5k − 18)

∑
cyc
ab2

−2(k − 10)
∑
cyc
a2 − 12(k + 1)abc+ 2(k − 18)

∑
cyc
ab

+16(k − 3)
∑
cyc
a+ 24(k − 2) ≥ 0 (1)

We denote p = a+b+c, q = ab+bc+ca = 3, and r = abc. Using
the formulas ∑

cyc
a3b+

∑
cyc
ab3 = p2q − 2q2 − pr,

∑
cyc
a3 = p3 − 3pq + 3r,

∑
cyc
a2b2 = q2 − 2pr,

∑
cyc
a2b+

∑
cyc
ab2 = pq − 3r,

∑
cyc
a2 = p2 − 2q,

the inequality (1) becomes

2(8− k)p3 + (44− 5k)p2 + (k − 16)pr
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+(19k − 138)p− (3k + 18)r + 6(7k − 58) ≥ 0 (2)

Looking at (2), we will try k = 8. We have to prove that

2p2 + 7p ≥ 4pr + 21r + 6. (3)

Since pq ≥ 9r implies p ≥ 3r , it remains to prove that

2p2 ≥ 4pr + 6. (4)

Using p ≥ 3, we obtain

2p2 =
4

3
p2 +

2

3
p2 ≥

4

3
p(3r) + 2/3 · 9 = 4pr + 6.

Suppose that k ≥ 8 and let c = 0. The sum p can be very large,
hence we can suppose that 2p3+5p2−19p−42 > 0. The inequality
(2) is equivalent to

2(8− k)p3 + (44− 5k)p2 + (19k − 138)p+ 6(7k − 58) ≥ 0,

and

k ≤
16p3 + 44p2 − 139p− 340

2p3 + 5p2 − 19p− 42
.

For p tending to infinity, it results that k ≤ 8. Hence, the greatest
k is k = 8.

Also solved by Nicuşor Zlota, “Traian Vuia” Technical College, Foc-
şani, Romania.

MH–134. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a non-right triangle with AB 6= AC . Let H be its or-
thocenter, O be its circumcenter, Ma,Mb,Mc be the midpoints
of the sides BC,CA,AB respectively, and Ha,Hb,Hc be the feet
of the altitudes drawn from A,B,C respectively. Let D be the
intersect point of AO and BC , N be the midpoint of OH and N0

be the reflection of N in BC . Let M0 be the midpoint of AMa

and H0 be the intersect point of HbHc and MbMc . Knowing that
AB ·AC = 4 ·AHa ·AD , prove that the points A,N0,M0,H0 are
concyclic.
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Solution by the proposer. We first establish a lemma.

Lemma 1. For any non-right triangle ABC with AB 6= AC , OH ⊥
AH0 .

Proof.

Scheme for Solution of MH-134.

Let D,E,N be the midpoints of AO,AH,OH respectively. Denote
with ω1 the circumcircle with diameter AH centered at E , with ω2

the circumcircle with diameter AO centered at D and with ω3 the
nine point circle centered at N . Since ∠AHbH = ∠AHcH = 90◦ ,
we have Hb,Hc ∈ ω1 . Since ∠AMbO = ∠AMcO = 90◦ , we have
Mb,Mc ∈ ω2 . But Hb,Hc,Mb,Mc ∈ ω3 . Denote with F the
second intersect point of ω1, ω2 .

Now, ω1 ∩ ω2 = {A,F}, ω2 ∩ ω3 = {Mb,Mc}, ω1 ∩ ω3 = {Hb,Hc},
hence AF,MbMc,HbHc are their pairwise radical axes and they
concur at the radical center of these three circles and this is
H0 = MbMc ∩HbHc . Therefore H0, A, F are collinear. Since the
radical axis of two circles is perpendicular to the line connecting the
centers of the circles, hence AF ⊥ DE . But DE is a midsegment
in the triangle AHO , so DE ‖ HO and therefore AH0 ≡ AF ⊥
OH .

Let BC = a,CA = b,AB = c are the side lengths of the triangle
ABC .
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Scheme for Solution of MH-134.

Denote with ha = AHa a altitude and with R = AO the radius
of the circumcircle of the triangle ABC . Let S be the area of the
4ABC .

S =
1

2
aha =

abc

4R
Hence

AB ·AC = 2haR = 2 ·AHa ·AO = 4 ·AHa ·AD

so D is the midpoint of AO and O and A are in different half-
planes about BC , so ∠BAC > 90◦ and A is between H and Ha .
Since O lies on the perpendicular bisector of BC , hence OMa ⊥
BC and OMa ‖ AHa , so 4AHaD ∼= 4OMaD , HaD = DMa ,
OMa = AHa = ha . M0D is a midsegment in the triangle AMaO
and since OMa ⊥ BC , hence M0D ⊥ BC . On the other hand
ND is a midsegment in the triangle HAO and ND ⊥ BC , so
the points N,M0, D,N0 are collinear and from MbMc ‖ BC and
since H0,M0,Mb,Mc are collinear, hence ∠H0M0N0 = 90◦ .

Since D bisects NN0 and AO , ANON0 is a parallelogram and
AN0 ‖ NO ≡ OH . From the Lemma 1 we get OH ⊥ AH0 ,
or AN0 ⊥ AH0 , ∠H0AN0 = ∠H0M0N0 = 90◦ and therefore
A,N0,M0,H0 are concyclic.
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MH–135. Proposed by Vasile Cîrtoaje, Petroleum-Gas University
of Ploiesţi, Romania Romania. Let a ≥ b ≥ c ≥ 1 ≥ d ≥ e ≥ 0
such that ab+ bc+ cd+ de+ ea = 5. Prove that

1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥

5

4
.

Solution by the proposer. For fixed a, d and e, from the equality
constraint we may assume that b is a function of c. By differenti-
ating the constraint, we get

(a+ c)b′ + b+ d = 0, −b′ =
b+ d

a+ c
≤ 1.

Denoting the left side of the desired inequality by f(c), we have

f ′(c) =
−b′

(b+ 3)2
−

1

(c+ 3)2
≤

1

(b+ 3)2
−

1

(c+ 3)2
≤ 0.

Thus, f(c) is decreasing and has the minimum value when c is
maximum, that is when c = b. So, we only need to show that

1

a+ 3
+

1

b+ 3
+

1

d+ 3
+

1

e+ 3
≥

5

4

for
ab+ b2 + bd+ de+ ea = 5, a ≥ b ≥ 1 ≥ d ≥ e.

For fixed a and e, from the equality constraint, we may assume
that b is a decreasing function of d. By differentiating the con-
straint, we get

(a+ 2b+ d)b′ + b+ e = 0, −b′ =
b+ e

a+ 2b+ d
≤

1

2
.

Denoting the left side of the desired inequality by g(d), we have

g′(d) =
−2b′

(b+ 3)2
−

1

(d+ 3)2
≤

1

(b+ 3)2
−

1

(d+ 3)2
≤ 0.

Thus, g(d) is decreasing and has the minimum value when d is
maximum (b is minimum), that is when d = 1 (because d ≤ 1) or
b = 1 (because b ≥ 1). So, it suffices to consider these cases.
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Case 1: d = 1. We need to show that

1

a+ 3
+

2

b+ 3
+

1

e+ 3
≥ 1

for
ab+ b2 + b+ e+ ea = 5, a ≥ b ≥ 1 ≥ e.

Since

e =
5− b− b2 − ab

1 + a
, e+ 3 =

8− b− b2 + (3− b)a
1 + a

,

we need to show that

1

a+ 3
+

2

b+ 3
+

1 + a

8− b− b2 + (3− b)a
≥ 1,

which is equivalent to

1

a+ 3
+

1 + a

8− b− b2 + (3− b)a
≥
b+ 1

b+ 3
,

(b− 1)[ba2 + (b2 + 5b− 4)a+ 2b2 + 4b− 9] ≥ 0.

Since a ≥ b ≥ 1, we have

ba2+(b2+5b−4)a+2b2+4b−9 ≥ a2+2a−3 = (a−1)(a+3) ≥ 0.

Case 2: b = 1. We need to show that

1

a+ 3
+

1

d+ 3
+

1

e+ 3
≥

3

4

for
(a+ d)(e+ 1) = 4, a ≥ 1 ≥ d ≥ e.

Write the desired inequality as

a+ d+ 6

(a+ 3)(d+ 3)
+

1

e+ 3
≥

3

4
.

From (a− 1)(d− 1) ≤ 0, we get ad ≤ a+ d− 1, hence

(a+ 3)(d+ 3) = (a− 1)(d− 1) + 4(a+ d) + 8 ≤ 4(a+ d) + 8
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and

a+ d+ 6

(a+ 3)(d+ 3)
≥

a+ d+ 6

4(a+ d) + 8
=

4/(e+ 1) + 6

16/(e+ 1) + 8
=

3e+ 5

4(e+ 3)
.

So, it suffices to show that

3e+ 5

4(e+ 3)
+

1

e+ 3
≥

3

4
,

which is an identity.

The equality occurs for b = c = d = 1 and a + e + ae = 3,
a ≥ 1 ≥ e.

MH–136. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. If
a > b > 1 are integers such that (a+b)|(ab+1) and (a−b)|(ab−1),
then prove that a < b

√
3.

Solution 1 by Michel Bataille, Rouen, France. The hypothesis
ensures that ab + 1 = k(a + b) and ab − 1 = `(a − b) for some
positive integers k, `. We deduce that

a(b− k) = kb− 1, a(`− b) = `b− 1 (1)

and therefore a and b are co-prime integers. Also, we see that
` > b > k.
By subtraction, (1) yields b(`− k) = a(k + `− 2b), and since a, b
is co-prime, a divides `− k. Thus, `− k = au for some positive
integer u and consequently bu = k + `− 2b.
Now, since (k + `)b− a(`− k) = 2 (from (1)), we obtain

a2 = b2 + 2
b2 − 1

u
.

Furthermore, we have

b2 −
b2 − 1

u
=
b2(u− 1) + 1

u
> 0,

hence b2−1
u

< b2 and therefore a2 < b2 + 2b2 = 3b2 . Taking square
roots, we deduce a < b

√
3 (since a, b > 0).
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Solution 2 by the proposers. Since (a + b) | (ab + 1) then (a +
b) | [b(a + b)− (ab + 1)] = b2 − 1, and from (a− b) | (ab− 1), we
get that (a− b) | [−b(a− b) + (ab− 1)] = b2 − 1. Hence,

[a− b, a+ b] | (b2 − 1) and [a− b, a+ b] ≤ b2 − 1

Let d = (a, b) then d | a | ab and d | (a + b) | (ab + 1) from which
follows that d | (ab + 1 − ab) = 1. Then d = 1 and a and b are
coprime. Let e = (a−b, a+b), then e | [(a+b)+(a−b)] = 2a and
e | [(a + b) − (a − b)] = 2b from which follows that e | (2a, 2b) =
2(a, b) = 2. Therefore, e ≤ 2. From the identity [x, y] (x, y) = xy ,
we get

[a− b, a+ b] =
(a− b)(a+ b)

(a− b, a+ b)
≥
a2 − b2

2

that jointly with [a− b, a+ b] ≤ b2 − 1, we obtain

a2 − b2

2
≤ b2 − 1⇔ a2 ≤ 3b2 − 2 ≤ 3b2

and a < b
√

3 follows. Since b > a > 1, then the equality does not
hold.
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Advanced Problems

A–131. Proposed by Mihaela Berindeanu, Bucharest, Romania.
For x > 0, calculate

lim
x→∞

x+1∫
[x]

(sin t)2025

t2 + 4
dt.

Solution 1 by Albert Stadler, Herrliberg, Switzerland. Clearly,
1≤x+1-[x]<2 and |sin t|≤1. Hence∣∣∣∣∣∣

∫ x+1

[x]

(sint )2025

t2 + 4
dt

∣∣∣∣∣∣ ≤ 2

[x]2 + 4

and limx→∞
∫ x+1
[x]

(sint )2025

t2+4
dt = 0.

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
Purchase, New York, USA. The limit is 0. We have

0 ≤
∣∣∣∣∣∣
∫ x+1

bxc

(sin t)2025

t2 + 4
dt

∣∣∣∣∣∣
≤

∫ x+1

bxc

|(sin t)2025|
t2 + 4

dt

≤
∫ x+1

bxc

1

t2 + 4
dt

AGM
≤

1

4
·
∫ x+1

bxc

dt

t

=
1

4
· ln

(
x+ 1

bxc

)
. (1)

With {x} denoting the fractional part of x, we have

x+ 1

bxc
=
bxc+ {x}+ 1

bxc
= 1 +

{x}
bxc

+
1

bxc
→ 1 as x→∞,

and we see that the expression in (1) goes to 0, giving us the
claimed limit by the squeeze principle.
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Solution 3 by Moti Levy, Rehovot, Israel.

I =
∫ x+1

[x]

(sin(t))2025

t2 + 4
dt

|I| ≤
∫ x+1

[x]

∣∣∣∣∣∣(sin(t))2025

t2 + 4

∣∣∣∣∣∣dt ≤
∫ x+1

[x]

1

t2 + 4
dt

∫ x+1

[x]

1

t2 + 4
dt

t=ux
=

∫ 1+ 1
x

[x]
x

1

u2x2 + 4
xdu

=
1

x

∫ 1+ 1
x

[x]
x

1

u2 + 4
x2

du ≤
1

x

∫ 1+ 1
x

[x]
x

1

u2
du

=
1

[x]
−

1

x+ 1
=
x+ 1− [x]

[x](x+ 1)
=

1 + {x}
[x](x+ 1)

≤
2

[x](x+ 1)

lim
x→∞
|I| ≤ lim

x→∞

2

[x](x+ 1)
= 0

lim
x→∞
|I| = 0 =⇒ lim

x→∞
I = 0

Solution 4 by Michel Bataille, Rouen, France. (We assume that
[x] denotes the integral part of x.)

For t ≥ 0, let f(t) =
(sin t)2025

t2 + 4
. The function f is continuous,

hence integrable on every interval [0, X] (X > 0). In addition, we
have

|f(t)| ≤
1

t2 + 4

for all t ≥ 0 (since | sin t| ≤ 1). Since
∫∞
0

dt

t2 + 4
exists, the integral∫ ∞

0
f(t) dt is convergent. Let I be its value. We have

∫ x+1

[x]

(sin t)2025

t2 + 4
dt =

∫ x+1

0
f(t) dt−

∫ [x]

0
f(t) dt

and

lim
x→∞

∫ x+1

0
f(t) dt = I, lim

x→∞

∫ [x]

0
f(t) dt = I
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(since lim
x→∞

(x+ 1) = lim
x→∞

[x] =∞).
We conclude that

lim
x→∞

∫ x+1

[x]

(sin t)2025

t2 + 4
dt = 0.

Solution 5 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. Let x > 0. For t ∈ [bxc, x + 1], 1

t2+4

does not change sign, so by the Weighted Mean Value Theorem for
Integrals, there exists ξ ∈ [bxc, x+ 1] such that∫ x+1

bxc

(sin t)2025

t2 + 4
dt = (sin ξ)2025

∫ x+1

bxc

1

t2 + 4
dt.

Now,
1

(x+ 1)2 + 4
<

1

t2 + 4
<

1

bxc2 + 4

for t ∈ [bxc, x+ 1], and

1 ≤ x+ 1− bxc < 2,

so
1

(x+ 1)2 + 4
<
∫ x+1

bxc

1

t2 + 4
dt <

2

bxc2 + 4
.

Because
lim
x→∞

1

(x+ 1)2 + 4
= lim

x→∞

2

bxc2 + 4
= 0,

it follows from the squeeze theorem that

lim
x→∞

∫ x+1

bxc

1

t2 + 4
dt = 0.

Additionally, because (sin ξ)2025 is bounded as x→∞, it follows
that

lim
x→∞

(sin ξ)2025
∫ x+1

bxc

1

t2 + 4
dt = 0.

Thus,

lim
x→∞

∫ x+1

bxc

(sin t)2025

t2 + 4
dt = 0.

Also solved by the proposer.
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A–132. Proposed by Vasile Mircea Popa, Affiliate Professor, "Lu-
cian Blaga" University of Sibiu, Romania. Calculate the following
integral: ∫ ∞

0

arctan(x)
3
√
x6 + 1

dx.

Solution 1 by Joseph Santmyer, Las Cruces, New Mexico, USA.
Let u = 1/x. Then x = 1/u. If x = 0 then u = ∞ and if x = ∞
then u = 0. Also, du

dx
= −x−2 , that is, −du

u2 = dx. Hence

I =
∫ 0

∞

tan−1
Ä

1
u

ä
3

√
1 +

Ä
1
u

ä6 ñ−duu2

ô
=

∫ ∞
0

u2 cot−1(u)
3
√

1 + u6

ñ
du

u2

ô
=

∫ ∞
0

cot−1(u)
3
√

1 + u6
du

=
∫ ∞

0

π
2
− tan−1(u)

3
√

1 + u6
du

=
π

2

∫ ∞
0

du
3
√

1 + u6
−
∫ ∞

0

tan−1(u)
3
√

1 + u6
du

=
π

2

∫ ∞
0

du
3
√

1 + u6
− I

2I =
π

2

∫ ∞
0

du
3
√

1 + u6

I =
π

4

∫ ∞
0

du
3
√

1 + u6
.

Let u = t
1
6 then u6 = t. If u = 0 then t = 0 and if u = ∞ then

t =∞. Also, dt
du

= 6u5 = 6t
5
6 , that is, dt

6t
5
6

= du. Hence

I =
π

4

∫ ∞
0

du
3
√

1 + u6
=
π

4

∫ ∞
0

dt

6t
5
6

3
√

1 + t
=
π

24

∫ ∞
0

t−
5
6

3
√

1 + t
dt

=
π

24

∫ ∞
0

t−
5
6

(1 + t)
2
6

dt =
π

24

∫ ∞
0

t−
5
6

(1 + t)
2
6

dt =
π

24

∫ ∞
0

t
1
6
−1

(1 + t)
1
6
+1

6

dt.
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By 17.2 and 17.5 on p 103 in (1) we get

I =
π

24
B

Ç
1

6
,
1

6

å
=

π

24

Γ2
Ä

1
6

ä
Γ
Ä

1
3

ä 
where B(r, s) is the beta function and Γ(r) is the gamma function.

REFERENCE.

[1] Spiegel, M. R., “Mathematical Handbook", Schaum’s Outline
Series, McGraw-Hill Book Company, 1968.

Solution 2 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. With the change of variables x→ 1/x
and the identity arctan(x) + arctan( 1

x
) = π

2
,

∫ ∞
1

arctan(x)
3
√
x6 + 1

dx =
∫ 0

1

arctan( 1
x
)

3
√
x−6 + 1

Ç
−
dx

x2

å
=
∫ 1

0

π
2
− arctan(x)

3
√
x6 + 1

dx.

Thus, ∫ ∞
0

arctan(x)
3
√
x6 + 1

dx =
π

2

∫ 1

0

1
3
√
x6 + 1

.

Now, in the integral on the right side, make the substitution x =
u1/6 to obtain ∫ 1

0

1
3
√
x6 + 1

dx =
1

6

∫ 1

0

u−5/6

(u+ 1)1/3
du.

With the substitution w = 1/u, it follows that

∫ 1

0

u−5/6

(u+ 1)1/3
du =

∫ ∞
1

w−5/6

(w + 1)1/3
dw

and ∫ 1

0

1
3
√
x6 + 1

dx =
1

12

∫ ∞
0

u−5/6

(u+ 1)1/3
du.

Next, let u = z/(1− z) to obtain

∫ 1

0

1
3
√
x6 + 1

dx =
1

12

∫ 1

0
z−5/6(1−z)−5/6 dz =

1

12
B

Ç
1

6
,
1

6

å
=

1

12

Γ
Ä

1
6

ä2
Γ
Ä

1
3

ä ,



Volume 12, No. 1, Spring 2025 97

where B(·, ·) is the beta function and Γ(·) is the gamma function.
Finally, ∫ ∞

0

arctan(x)
3
√
x6 + 1

dx =
π

24

Γ
Ä

1
6

ä2
Γ
Ä

1
3

ä .
Solution 3 by Michel Bataille, Rouen, France. The change of
variables x = 1/u gives∫ ∞

1

arctan(x)
3
√
x6 + 1

dx =
∫ 0

1

arctan(1/u)
3
»

(1/u)6 + 1
·
−du
u2

=
∫ 1

0

π/2− arctan(u)
3
√
u6 + 1

du

=
π

2

∫ 1

0

du
3
√
u6 + 1

−
∫ 1

0

arctan(u)
3
√
u6 + 1

du.

It follows that the required integral I is equal to

π

2

∫ 1

0

du
3
√
u6 + 1

.

Now, the change of variables u = 1/x leads to∫ 1

0

du
3
√
u6 + 1

=
∫ ∞

1

dx
3
√
x6 + 1

from which we deduce that
∫ 1

0

du
3
√
u6 + 1

=
J

2
where

J =
∫ ∞

0

dx
3
√
x6 + 1

=
1

6

∫ ∞
0

t−5/6

(1 + t)1/3
dt =

1

6
B(1/6, 1/6)

(since
∫ ∞

0

tx−1

(1 + t)x+y
dt = B(x, y) where B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
, a

well-known result). We deduce that

J =
(Γ(1/6))2

6Γ(1/3)

and conclude

I =
π

24
·

(Γ(1/6))2

Γ(1/3)
.
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Solution 4 by Moti Levy, Rehovot, Israel.

I =
∫ ∞

0

arctan(x)
3
√
x6 + 1

dx.

By change of integration variable t = 1/x

I =
∫ ∞

0

arctan
Ä

1
t

ä
3
√
t6 + 1

dt

2I =
∫ ∞

0

arctan
Ä

1
x

ä
+ arctan(x)

3
√
x6 + 1

dx =
∫ ∞

0

arctan
Ä

1
x

ä
+ arctan(x)

3
√
x6 + 1

dx

=
∫ ∞

0

π
2

3
√
x6 + 1

dx.

arctan

Ç
1

x

å
+ arctan(x) =

π

2
,

2I =
∫ ∞

0

π
2

3
√
x6 + 1

dx.

I =
π

4

∫ ∞
0

1
3
√
x6 + 1

dx

By change of integration variable t = x6,

I =
π

24

∫ ∞
0

t−
5
6

(t+ 1)
1
3

dt.

One of the integral representations of the Beta function is

B(z1, z2) =
∫ ∞

0

tz1−1

(t+ 1)z1+z2
dt.

I =
π

24
B

Ç
1

6
,
1

6

å
=
π

24

Γ2
Ä

1
6

ä
Γ
Ä

1
3

ä ∼= 1.51395

Solution 5 by Henry Ricardo, Westchester Area Math Circle,
Purchase, New York, USA. Let I denote the given integral. The
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substitution x = 1/u, dx = −u−2du and the identity arctan(1/u)+
arctanu− π/2 give us

I =
∫ ∞

0

(π/2− arctanu)
3
√
u6 + 1

du =
π

2

∫ ∞
0

du
3
√
u6 + 1

−
∫ ∞

0

arctanu
3
√
u6 + 1

du,

so that

2I =
π

2

∫ ∞
0

du
3
√
u6 + 1

, or I =
π

4

∫ ∞
0

du
3
√
u6 + 1

.

The successive substitutions t = u6 and x = t/(1 + t) yield the
value of the last integral:∫ ∞

0

du
3
√
u6 + 1

=
1

6

∫ ∞
0

dt

t5/6(t+ 1)1/3
=

1

6

∫ 1

0
x1/6−1(1− x)1/6−1 dx

=
1

6
B

Ç
1

6
,
1

6

å
,

where B(x, y) denotes Euler’s beta function. Now we can write

I =
π

4
·

1

6
·B

Ç
1

6
,
1

6

å
=

π

24
·B

Ç
1

6
,
1

6

å
=

π

24
·

Γ2
Ä

1
6

ä
Γ
Ä

1
3

ä ≈ 1.51395,

where we have used a well known relation between the beta and
gamma functions.

Solution 6 by Albert Stadler, Herrliberg, Switzerland. The vari-
able transform x→1/x yields∫ ∞

0

arctan(x)
3
√
x6 + 1

dx =
∫ ∞

0

arctan
Ä

1
x

ä
3
√
x6 + 1

dx.

Hence∫ ∞
0

arctan(x)
3
√
x6 + 1

dx =
1

2

∫ ∞
0

arctan(x) + arctan
Ä

1
x

ä
3
√
x6 + 1

dx =
π

4

∫ ∞
0

1
3
√
x6 + 1

dx.

We express the last integral in terms of the Euler beta func-
tion by means of the substitution y = 1/(x6 + 1) implying x =

(1− y)1/6

y1/6
, dx = −

1

6(1− y)5/6y7/6
dy and obtain

π

4

∫ ∞
0

1
3
√
x6 + 1

dx =
π

24

∫ 1

0
y

1
3
−7

6
1

(1− y)5/6
dy =

π

24

2
Ä

1
6

äÄ
1
3

ä .
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We use Legendre’s duplication formulaÅx
2

ãÇx+ 1

2

å
=

√
π

2x−1
(x)

as well as Euler’s reflection formula

(x)(1− x) =
π

sin(πx)

with x = 1/3 and getÇ
1

6

åÇ
2

3

å
= 2

2
3
√
π

Ç
1

3

å
,Ç

1

6

åÇ
1

3

åÇ
2

3

å
= 2

2
3
√
π

2
Ç

1

3

å
,Ç

1

6

å
=

√
3

2
1
3
√
π

2Ç
1

3

å
.

Finally ∫ ∞
0

arctan(x)
3
√
x6 + 1

dx =
π

24

2
Ä

1
6

äÄ
1
3

ä =
3
√

2 3
Ä

1
3

ä
16

.

Note: Γ(1/3) was shown to be transcendental by G. V. Chudnovsky.
As 3
√

2/16 is algebraic, the integral∫ ∞
0

arctan(x)
3
√
x6 + 1

dx

is transcendental.

Also solved by Nicuşor Zlota, “Traian Vuia” Technical College, Foc-
şani, Romania and the proposer.

A–133. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let ABC
be a triangle with side lengths BC = a,CA = b,AB = c, centroid
G and circumcircle Γ with circumcenter O . Let D be the reflection
of G in the line BC and E be the second intersect point of AG
and Γ. Knowing that AG = DE , find the maximum possible value
of

S =
(a+ b+ c)(a3 + b3 + c3)

a4 + b4 + c4

and determine where the maximum holds.
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Solution by the proposer. Let ∠BAC = α. Use barycentric
coordinates relative to the vertices A,B,C of the triangle; then
the centroid G = (1 : 1 : 1). The equation of the circumcircle of
4ABC is

Γ : a2yz + b2zx+ c2xy = 0

The equation of the line AG is∣∣∣∣∣∣∣
x 1 1
y 0 1
z 0 1

∣∣∣∣∣∣∣ = 0 so z − y = 0

Since E is the intersection point of AG and Γ, we get

E =
a2

a2 − 2b2 − 2c2
A+

−b2 − c2

a2 − 2b2 − 2c2
B +

−b2 − c2

a2 − 2b2 − 2c2
C

= (a2 : −b2 − c2 : −b2 − c2)

Let Ga be the orthogonal projection of G on BC . The equation of
the line BC is x = 0 and the point Ga = (0 : 1− x : x) for some
x ∈ R. The line GGa ⊥ BC so

−−→
GGa ·

−−→
BC = 0.

0 =
(−−→
AGa −

−→
AG

)
·
(−→
AC −

−→
AB

)
=

=

Ç
(1− x)

−→
AB + x

−→
AC −

1

3

−→
AB −

1

3

−→
AC

å
·
(−→
AC −

−→
AB

)
=

3x− 2

3
c2 +

3x− 1

3
b2 +

1

2
(1− 2x)(b2 + c2 − a2)

=
−3a2 + b2 − c2

6
+ a2x; x =

3a2 − b2 + c2

6a2

Ga =
3a2 + b2 − c2

6a2
B +

3a2 − b2 + c2

6a2
C

= (0 : 3a2 + b2 − c2 : 3a2 − b2 + c2)

where we have
−→
AB ·

−→
AB = c2;

−→
AC ·

−→
AC = b2;

−→
AB ·

−→
AC = bc cosα = bc

b2 + c2 − a2

2bc
=
b2 + c2 − a2

2
(1)
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Since Ga is the midpoint of GD , hence
−−→
GaD =

−−→
GGa .

D = 2Ga −G =
3a2 + b2 − c2

3a2
B +

3a2 − b2 + c2

3a2
C −

1

3
(A+B + C)

= −
1

3
A+

2a2 + b2 − c2

3a2
B +

2a2 − b2 + c2

3a2
C

= (−a2 : 2a2 + b2 − c2 : 2a2 − b2 + c2)

It is well known that squared length of the A-median is

ma
2 =

2b2 + 2c2 − a2

4

Since AG = 2
3
ma ,

AG2 =
1

9
(2b2 + 2c2 − a2)

DE2 =
−−→
DE ·

−−→
DE =

(−→
AE −

−−→
AD

)
·
(−→
AE −

−−→
AD

)
=

Ç −b2 − c2

a2 − 2b2 − 2c2

−→
AB +

−b2 − c2

a2 − 2b2 − 2c2

−→
AC

−
2a2 + b2 − c2

3a2

−→
AB −

2a2 − b2 + c2

3a2

−→
AC

å2

=

(
−2(a4 − b4 − a2c2 + c4)

3a2(a2 − 2b2 − 2c2)

−→
AB +

−2(a4 − a2b2 + b4 − c4)

3a2(a2 − 2b2 − 2c2)

−→
AC

)2

(1)
=

4(a4 − a2b2 + b4 − a2c2 − b2c2 + c4)

9(2b2 + 2c2 − a2)

AG2 −DE2 =
1

9
(2b2 + 2c2 − a2)−

4(a4 − a2b2 + b4 − a2c2 − b2c2 + c4)

9(2b2 + 2c2 − a2)

=
4b2c2 − a4

3(2b2 + 2c2 − a2)
=

(2bc− a2)(2bc+ a2)

3(2b2 + 2c2 − a2)
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So AG = DE if and only if

a2 = 2bc (2)

Now let b+ c = ua for some u > 0, then from AM-GM:

ua

2
=
b+ c

2
≥
√
bc =

√
a2

2
, so u ≥

√
2

with equality if and only if b = c and u =
√

2.

b2 + c2 = (b+ c)2 − 2bc = a2(u2 − 1)

b3 + c3 = (b+ c)3 − 3bc(b+ c) = a3

Ç
u3 −

3

2
u

å
b4 + c4 = (b2 + c2)2 − 2b2c2

= a4

Ç
(u2 − 1)2 −

1

2

å
= a4

Ç
u4 − 2u2 +

1

2

å
S =

(a+ b+ c)(a3 + b3 + c3)

a4 + b4 + c4

=
a4 + b4 + c4 + a3(b+ c) + a(b3 + c3) + bc(b2 + c2)

a4 + b4 + c4

= 1 +
u+ (u3 − 3

2
u) + 1

2
(u2 − 1)

1 + u4 − 2u2 + 1
2

= 1 +
2u3 + u2 − u− 1

2u4 − 4u2 + 3

We will prove that S ≤ 4
3

+
√

2. Let

Q =
4

3
+
√

2− S =
1

3
+
√

2−
2u3 + u2 − u− 1

2u4 − 4u2 + 3

=
2(1 + 3

√
2)u4 − 6u3 − (7 + 12

√
2)u2 + 3u+ 3(2 + 3

√
2)

3(2u4 − 4u2 + 3)

=
(u−

√
2)
Ä
(2 + 6

√
2)u3 + 2(3 +

√
2)u2 − 3(1 + 2

√
2)u− 3(3 +

√
2)
ä

3(2u4 − 4u2 + 3)

=
u−
√

2

6u2(
√

2 + u)(u−
√

2) + 9

Ä
15 + 2

√
2

+ (u−
√

2)((2 + 6
√

2)u2 + 2(9 + 2
√

2)u+ 5 + 12
√

2)
ä
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Since

15 + 2
√

2 + (u−
√

2)((2 + 6
√

2)u2 + 2(9 + 2
√

2)u+ 5 + 12
√

2) > 0;

6u2(
√

2 + u)(u−
√

2) + 9 > 0

for u ≥
√

2, hence Q ≥ 0 with equality if and only if u =
√

2 and
b = c.

It follows that

S =
4

3
+
√

2−Q ≤
4

3
+
√

2

The maximum value

Smax =
4

3
+
√

2

occurs if b = c, and since a2 = 2bc, it follows that a = b
√

2.

Finally the maximum value holds for isosceles triangle ABC with
(a; b; c) = (t

√
2; t; t), t > 0 .

A–134. Proposed by Michel Bataille, Rouen, France. Let Fm be
the m-th Fibonacci number (F0 = 0, F1 = 1 and Fm+1 = Fm +
Fm−1 for m ≥ 1). Let

An =
n∑
k=1

k

Fn+1−kFn+3−k
(n ≥ 1) and S =

∞∑
k=1

1

FkFk+1

.

Prove that

lim
n→∞

(An − n) = 1− S.

Solution 1 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. Multiply the numerator and denomina-
tor of the summand inside An by Fn+2−k , writing

Fn+2−k = Fn+3−k − Fn+1−k
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in the numerator. Then

An =
n∑
k=1

k(Fn+3−k − Fn+1−k)

Fn+1−kFn+2−kFn+3−k

=
n∑
k=1

k

(
1

Fn+1−kFn+2−k
−

1

Fn+2−kFn+3−k

)

=
n∑
k=1

k

Fn+1−kFn+2−k
−

n−1∑
k=0

k + 1

Fn+1−kFn+2−k

=
n

F1F2

−
n−1∑
k=1

1

Fn+1−kFn+2−k
−

1

Fn+1Fn+2

= n−
n∑
k=2

1

FkFk+1

−
1

Fn+1Fn+2

= n+ 1−
n+1∑
k=1

1

FkFk+1

.

Thus,

lim
n→∞

(An − n) = lim
n→∞

(
1−

n+1∑
k=1

1

FkFk+1

)

= 1−
∞∑
k=1

1

FkFk+1

= 1− S.

For completeness, we can show that the sum in S converges by
the ratio test:

lim
k→∞

1
Fk+1Fk+2

1
FkFk+1

= lim
k→∞

Fk

Fk+2

=
1

φ2
< 1,

where

φ =
1 +
√

5

2
.

Solution 2 by Moti Levy, Rehovot, Israel. By changing the di-
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rection of the summation index, we get

An =
n∑
k=1

k

Fn+1−kFn+3−k
=

n∑
k=1

n+ 1− k
FkFk+2

= (n+ 1)
n∑
k=1

1

FkFk+2

−
n∑
k=1

k

FkFk+2

=
n∑
k=1

1

FkFk+2

+
n∑
k=1

n− k
FkFk+2

=
n∑
k=1

1

FkFk+2

+
n−1∑
k=1

n− k
FkFk+2

. (1)

We use the following identity,

n−1∑
k=1

(n− k)bk =
n−1∑
k=1

k∑
m=1

bm,

to obtain
n−1∑
k=1

n− k
FkFk+2

=
n−1∑
k=1

k∑
m=1

1

FmFm+2

. (2)

We substitute (2) in (1) to get this expression for An,

An =
n∑
k=1

1

FkFk+2

+
n−1∑
k=1

k∑
m=1

1

FmFm+2

. (3)

Now, the following identity is known (also can easily be proved by
mathematical induction)

n∑
k=1

1

FkFk+2

= 1−
1

Fn+1Fn+2

. (4)

We substitute (4) twice in (3) to get another expression for An,

An = 1−
1

Fn+1Fn+2

+
n−1∑
k=1

(
1−

1

Fk+1Fk+2

)

= 1−
1

Fn+1Fn+2

+ n− 1−
n−1∑
k=1

1

Fk+1Fk+2

= n−
n∑
k=1

1

Fk+1Fk+2

= n+ 1−
n+1∑
k=1

1

FkFk+1

. (5)
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Equation (5) implies

An − n = 1−
n+1∑
k=1

1

FkFk+1

.

By taking the limit n→∞, we obtain the required result.

Solution 3 by the proposer. The change of index j = n+ 1− k
gives

An =
n∑
j=1

n+ 1− j
FjFj+2

= (n+ 1)
n∑
j=1

1

FjFj+2

−
n∑
j=1

j

FjFj+2

. (1)

For later use note that
1

FjFj+2

=
Fj+2 − Fj
FjFj+1Fj+2

=
1

FjFj+1

−
1

Fj+1Fj+2

so that for m ≥ 1,
∞∑
j=m

1

FjFj+2

=
1

FmFm+1

. (2)

In particular
∞∑
j=1

1

FjFj+2

= 1.

Let Un = An − n. We evaluate Un+1 − Un = An+1 −An − 1 with
the help of (1) and (2):

Un+1 − Un = (n+ 2)
n+1∑
j=1

1

FjFj+2

−
n+ 1

Fn+1Fn+3

− (n+ 1)
n∑
j=1

1

FjFj+2

− 1

=
n+1∑
j=1

1

FjFj+2

− 1 = −
∞∑

j=n+2

1

FjFj+2

= −
1

Fn+2Fn+3

We deduce that for n ≥ 2, we have

Un = U1 +
n−1∑
j=1

(Uj+1 − Uj) = A1 − 1−
n−1∑
j=1

1

Fj+2Fj+3

and therefore

lim
n→∞

(An − n) = lim
n→∞

Un = −
1

2
−
Ç
S −

1

F1F2

−
1

F2F3

å
= 1− S.

Also solved by José Gibergans-Báguena, BarcelonaTech, Terrassa,
Spain, and José Luis Díaz-Barrero, Barcelona, Spain.
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A–135. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let {xn}n≥0 and {yn}n≥0 be sequences of real numbers satisfying

x2
n+y2

n+x2
n−1 +y2

n−1 = (ynxn−1−xnyn−1)+
√

3(xnxn−1 +ynyn−1).

Show that they are periodic and determine their periods.

Solution 1 by Michel Bataille, Rouen, France. Using the hy-
pothesis, we readily see thatÑ

xn +
1

2
yn−1 −

√
3

2
xn−1

é2

+

Ñ
yn −

1

2
xn−1 −

√
3

2
yn−1

é2

= 0.

It follows that the sequences {xn} and {yn} satisfy the recursions

xn =

√
3

2
xn−1 −

1

2
yn−1, yn =

1

2
xn−1 +

√
3

2
yn−1,

that is,
Ç
xn
yn

å
= A

Ç
xn−1

yn−1

å
where A =

Ñ√
3

2
−1

2
1
2

√
3

2

é
.

The characteristic polynomial of A is

λ2 −
√

3λ+ 1 = (λ− eiπ/6)(λ− e−iπ/6),

hence A = PDP−1 for some invertible matrix P where

D =

Ç
eiπ/6 0

0 e−iπ/6

å
.

It follows that for nonnegative integers n, k we haveÇ
xn+k

yn+k

å
= Ak

Ç
xn
yn

å
= PDkP−1

Ç
xn
yn

å
.

Since Dk =

Ç
1 0
0 1

å
if and only if k = 12m for some integer m,

we deduce that {xn} and {yn} are periodic with group of periods
12Z.
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Solution 2 by Brian Bradie, Christopher Newport University,
Newport News, VA, USA. Let xn = rn cos θn and yn = rn sin θn .
Substituting these expressions into

x2
n+y2

n+x2
n−1 +y2

n−1 = (ynxn−1−xnyn−1)+
√

3(xnxn−1 +ynyn−1)

yields

r2
n + r2

n−1 = rnrn−1(sin θn cos θn−1 − cos θn sin θn−1)

+
√

3rnrn−1(cos θn cos θn−1 + sin θn sin θn−1)

= 2rnrn−1

Ñ
1

2
sin(θn − θn−1) +

√
3

2
cos(θn − θn−1)

é
= 2rnrn−1 cos

Å
θn − θn−1 −

π

6

ã
.

Now, by the AM-GM inequality, r2
n + r2

n−1 ≥ 2rnrn−1 with equality
holding if and only if rn = rn−1 . On the other hand,

2rnrn−1 cos
Å
θn − θn−1 −

π

6

ã
≤ 2rnrn−1

with equality holding if and only if

θn − θn−1 −
π

6
= 2kπ

for some integer k. Thus, rn must equal rn−1 and

θn = 2kπ + θn−1 +
π

6

for some integer k. It follows that rn = R for all n for some real
number R and

θn+11 = (24k + 1)π + θn−1,

which implies xn+11 = xn−1 and yn+11 = yn−1 for all n. The
sequences {xn}n≥0 and {yn}n≥0 are therefore periodic, and each
has period 12.

Solution 3 by Moti Levy, Rehovot, Israel. Let us define a se-
quence (zn)n≥0 of complex numbers byzn = xn + iyn. Then

|zn|2 = x2
n + y2

n,

Re(znzn−1) = xnxn−1 + ynyn−1,

Im(znzn−1) = xnyn−1 − ynxn−1.
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Thus, the equation x2
n + y2

n + x2
n−1 + y2

n−1 = (ynxn−1 − xnyn−1) +√
3(xnxn−1 + ynyn−1) becomes

|zn|2 + |zn−1|2 = − Im(znzn−1) +
√

3 Re(znzn−1).

|zn|2 + |zn−1|2 = Re
(√

3znzn−1 − iznzn−1

)
= Re

((√
3− i

)
znzn−1

)
.

Now, let us define a sequence (Tn)n≥0 of complex numbers by

Tn =
zn

zn−1

, or zn = Tnzn−1.

We have

|zn|2 = znzn = Tnzn−1Tnzn−1 = |Tn|2|zn−1|2.

|zn|2 + |zn−1|2 =
Ä
|Tn|2 + 1

ä
|zn−1|2.Ä

|Tn|2 + 1
ä
|zn−1|2 = Re

((√
3− i

)
Tnzn−1zn−1

)
,Ä

|Tn|2 + 1
ä
|zn−1|2 = Re

((√
3− i

)
Tn|zn−1|2

)
.

Dividing by |zn−1|2 , the original equation is equivalent to

|Tn|2 + 1 = Re
((√

3− i
)
Tn
)
.

(assuming that zn−1 6= 0, otherwise the sequences must be con-
stant zeros).
It follows that Tn is constant (does not depend on n), so we may
write,

Tn = αeiθ, α ≥ 0.

α2 + 1 = 2αRe
Ä
e−i

π
6 eiθ

ä
α2 − 2α cos

Å
θ −

π

6

ã
+ 1 = 0.

cos
Ä
θ − π

6

ä
must be positive, hence

0 = α2 − 2α cos
Å
θ −

π

6

ã
+ 1 ≥ (α− 1)2.
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It follows that
α = 1.

2− 2 cos
Å
θ −

π

6

ã
= 0

θ = −
π

6
+ 2πk, k ∈ Z.

Tn = e−i
π
6 ,

and
zn = e−i

π
6 zn−1.

We conclude that each zn is a rotation of zn−1 by π
6
, hence the

sequence {xn, yn} is periodic with period 12.

Solution 4 by the proposer. Multiplying all the terms by 4, yields

4 (x2
n+x2

n−1+y2
n+y2

n−1) = 4 (ynxn−1−xnyn−1)+4
√

3 (xnxn−1+ynyn−1).

Rearranging terms, we get

4 (x2
n+y2

n)+4 (x2
n−1+y2

n−1)−4 (xnyn−1−ynxn−1)−4
√

3 (xnxn−1+ynyn−1) = 0.

Completing squares, we obtain(
2xn −

√
3xn−1 − yn−1

)2
+
(
2yn + xn−1 −

√
3 yn−1

)2
= 0

from which it follows

2xn −
√

3xn−1 − yn−1 = 0,

2yn + xn−1 −
√

3 yn−1 = 0,

or

xn =

√
3

2
xn−1 +

1

2
yn−1 = cos

π

6
xn−1 + sin

π

6
yn−1,

yn = −
1

2
xn−1 +

√
3

2
yn−1 = − sin

π

6
xn−1 + cos

π

6
yn−1.

In matrix from, we haveÇ
xn
yn

å
=

Ç
cos π

6
sin π

6

− sin π
6

cos π
6

åÇ
xn−1

yn−1

å
=

Ç
cos π

6
sin π

6

− sin π
6

cos π
6

ånÇ
x0

y0

å
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Using induction, it is easy to see thatÇ
cos π

6
sin π

6

− sin π
6

cos π
6

ån
=

Ç
cos nπ

6
sin nπ

6

− sin nπ
6

cos nπ
6

å
,

and then we haveÇ
xn
yn

å
=

Ç
cos nπ

6
sin nπ

6

− sin nπ
6

cos nπ
6

åÇ
x0

y0

å
or

xn = x0 cos
nπ

6
+ y0 sin

nπ

6
,

yn = −x0 sin
nπ

6
+ y0 cos

nπ

6
.

Then,

xn+12 = x0 cos
(n+ 12)π

6
+ y0 sin

(n+ 12)π

6
= xn,

yn+12 = −x0 sin
(n+ 12)π

6
+ y0 cos

(n+ 12)π

6
= yn.

So, xn+12 = xn , yn+12 = yn and both sequences are periodic with
period T = 12.

A–136. Proposed by José Luis Díaz-Barrero, Barcelona, Spain
and Óscar Rivero Salgado, Santiago de Compostela, Spain. Find
all n-tuples (a1, a2, . . . , an) of positive integers such that

(a1!− 1)(a2!− 1) . . . (an!− 1) = 42 + k2,

where k is an integer number.

Solution by the proposers. First, we claim that if p is a prime
of the form 4n + 3 and a and b are integers such that p | a2 + b2 ,
then p divides a and p divides b. Indeed, assume that p does not
divide a then there exists a positive integer c such that ca ≡ 1
(mod p). Since p | a2+b2 then p | c2(a2+b2) = (ca)2+(cb)2 and we
have that 1 + (bc)2 ≡ 0 (mod p) from which (bc)2 ≡ −1 (mod p)
follows. Since p - bc then it holds

(−1)
p−1
2 ≡ (bc)p−1 ≡ 1 (mod p)
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where the last congruence is true on account of Fermat’s Little
Theorem (FLT). On the other hand, since p ≡ 3 (mod 4) then

(−1)
p−1
2 = −1

(contradiction) and the claim is proven.

Now, we suppose that

(a1!− 1)(a2!− 1) . . . (an!− 1)− 16 = k2.

We will see that ai ∈ {2, 3} for all i, (1 ≤ i ≤ n). Obviously,
ai 6= 1 for 1 ≤ i ≤ n, so assume that ai > 3 for some i. Then
ai! − 1 ≡ 3 (mod 4), thus there is a prime p ≡ 3 (mod 4) such
that p | ai! − 1. Then, p divides 42 + k2 , a contradiction by the
claim. So, actually ai ∈ {2, 3}.

Let m be the number of ai in the sequence (a1, a2, . . . , an) and
the remaining n−m equal to 2. In this case, the equation

(a1!− 1)(a2!− 1) . . . (an!− 1)− 16 = k2

becomes 5m − 16 = k2 . Since k is odd, then considering the last
equation (mod 8) we get that m is even. But thenÄ

5m/2 − k
ä Ä

5m/2 + k
ä

= 16.

Since the divisors of 16 are 1, 2, 4, 8, 16, then by inspection, im-
mediately it follows that

Ä
5m/2 − k

ä
= 2 and

Ä
5m/2 + k

ä
= 8 from

which we get m = 2. Thus the sequence (a1, a2, . . . , an) contains
two terms equal 3 and n− 2 equal 2. Clearly, all such sequences
are solutions of the problem.

Also solved by Moti Levy, Rehovot, Israel.

Previous issue solutions

Ioan Viorel Codreanu, Satulung, Maramures, Romania sent so-
lutions to proposals E-125,E-126,E-127, EM-128 and MH-128.
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