
No. 2
2024





CONTENTS

Articles

Goldbach’s Conjecture mod n
by Joe Santmyer 142

A Portrayal of Integer Solutions to Non-homogeneous Ternary
Cubic Diophantine Equation 6(x2 + y2)− 11xy = 2z3

by J. Shanthi, N. Thiruniraiselvi and M. A. Gopalan 158

Problems

Elementary Problems: E131–E136 170

Easy–Medium Problems: EM131–EM136 172

Medium–Hard Problems: MH131–MH136 174

Advanced Problems: A131–A136 176

Mathlessons

The W function and some of its applications
by Simone Camosso 180

Contests

Problems and solutions from the 2nd edition of the Barcelona
Spring Matholympiad
by O. Rivero Salgado and J. L. Díaz-Barrero 192

Solutions

Elementary Problems: E125–E130 199

Easy–Medium Problems: EM125–EM130 214

Medium–Hard Problems: MH125–MH130 229

Advanced Problems: A125–A130 242





Volume 11, No. 2, Autumn 2024 141

Articles
Arhimede Mathematical Journal aims to publish interesting and
attractive papers with elegant mathematical exposition. Articles
should include examples, applications and illustrations, when-
ever possible. Manuscripts submitted should not be currently
submitted to or accepted for publication in another journal.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu



142 Arhimede Mathematical Journal

Goldbach’s Conjecture mod n

Joe Santmyer

Abstract

An entertaining, and sometimes interesting exercise, is to take
a mathematical statement or formula that applies to the set
of integers and reformulate it into a mod n analog. The state-
ments in mathematics that I find most intriguing are conjec-
tures, those claims that may have a wealth of supporting ev-
idence but have resisted mathematical proof. In this paper a
mod n version of a well known conjecture is formulated and
discussed.

1 Variants of the Goldbach Conjec-
ture, GC

Consider the famous Goldbach Conjecture, GC.

Goldbach Conjecture, GC: Every even integer greater than 2 is the
sum of two, not necessarily distinct, prime numbers.

Now change prime to relatively prime. Relatively prime to what?
An integer n needs to be introduced so that the integers that sum
to the even integer are each relatively prime to n. Consequently,
the mod n version is stated as follows.

GC mod n: Let n be a positive integer. Every even integer is the
sum of two, not necessarily distinct, integers relatively prime to n.

GC is a statement about the set Z of integers. GC mod n is a
statement about the set Zn = {0, 1, 2, . . . , n− 1} of integers under
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addition mod n. The set of integers in Zn relatively prime to n is
the set of units of the ring Zn under addition and multiplication
mod n. The set of units is commonly denoted as Z∗n . With this
notation introduced, GC mod n can be reformulated as follows.

GC mod n: Let n be a positive integer. If s ∈ Zn and s is even
then there exist integers x, y ∈ Z∗n that satisfy the congruence
s ≡ (x+ y) mod n.

In fact, the following stronger statement is true.

Theorem 1. Let n be a positive integer and s ∈ Zn . There exist
integers x, y ∈ Z∗n that satisfy the congruence s ≡ (x + y) mod n
except when s is odd and n is even.

The previous result is stated as a theorem because it can be proved.
In fact, a formula can be derived that counts the number of solu-
tions. The formula was motivated by several results mentioned in
[5]. Variations and reformulations of GC are not new. Others can
be found in [1] and [3].

The primary goal of this paper is to prove theorem 1 and de-
rive a formula for counting the number of solutions in Zn to the
congurence s ≡ (x+ y) mod n with x and y relatively prime to n.
To get started the following lemma is proved.

Lemma 1. Let n be a positive even integer and s ∈ Zn with s odd.
No integers x, y ∈ Z∗n satisfy the congruence s ≡ (x+ y) mod n.

Proof. Suppose x, y ∈ Z∗n . Since x, y ∈ Z∗n , x and y are relatively
prime to n. Since n is even both x and y must be odd. Conse-
quently, x+ y is even. Since s is odd, x and y cannot satisfy the
congruence s ≡ (x + y) mod n. Therefore, no x, y ∈ Z∗n satisfy
the congruence. This completes the proof of the lemma.

2 A Recurrence Formula

The goal now is to prove theorem 1 and derive a formula which
counts the number of solutions. A solution to s ≡ (x+ y) mod n
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is either a two element set {x, y} or the set {x} if y = x. The fol-
lowing definition will be useful in proving theorem 1 and counting
solutions.

Definition 1. Let n be a natural number and s ∈ Zn . Define the
set Rn,s as

Rn,s = {x ∈ Z∗n : there exists y ∈ Z∗n with s ≡ (x+ y) mod n}.

Observation. Note that Rn,0 = Z∗n since for each x ∈ Z∗n , if y =
n− x ∈ Z∗n then 0 ≡ (x+ y) mod n.

Let |Rn,s| denote the number of elements in Rn,s . By lemma 1,
|Rn,s| = 0 when n is even and s is odd.

With the aid of Mathematica consider some examples.

Example 1. If n = 24 then Z∗24 = {1, 5, 7, 11, 13, 17, 19, 23}. For
s ∈ Z24 and s odd we have R24,s = ∅. Otherwise

R24,0 = R24,6 = R24,12 = R24,18 = Z∗24
R24,2 = R24,8 = R24,14 = R24,20 = {1, 7, 13, 19}
R24,4 = R24,10 = R24,16 = R24,22 = {5, 11, 17, 23}.

Example 2. If n = 45 then

Z∗45 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23,

26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44}.
If s = 13, s = 27 and s = 38 we have

R45,13 = {2, 11, 14, 17, 26, 29, 32, 41, 44}
R45,27 = {1, 4, 8, 11, 13, 14, 16, 19, 23, 26, 28, 29, 31, 34, 38, 41, 43, 44}
R45,38 = {1, 4, 7, 16, 19, 22, 31, 34, 37}.

The following result provides a recurrence that can be used to
prove a counting formula for |Rn,s| by mathematical induction.
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Lemma 2. Let n ≥ 2 be an integer with prime factorization

n = pα1

1 p
α2

2 · · · p
αk−1

k−1 p
αk
k

where αi > 0 for 1 ≤ i ≤ k and p1 < p2 < · · · < pk is an increas-
ing sequence of primes (the pi are not necessarily the first k primes).
Let m = n/pαkk . Let s ∈ Zn and s = mq + s0 where s0 ∈ Zm (by
the Euclidean algorithm given s and m such a representation of s
is always possible). Then

|Rn,s| =



pαk−1
k (pk − 1)|Rm,s0| if pk | s,
pαk−1
k (pk − 2)|Rm,s0| otherwise.

Proof. The overall idea of the proof is to show that for each x ∈
Rm,s0 there are pαk−1

k (pk − 1) integers y relatively prime to pk
satisfying the congruence s ≡ (x+y) mod n when pk | s, otherwise
there are pαk−1

k (pk − 2) such integers.

Let x ∈ Rm,s0 . Consider the integer u = ma + x where 0 ≤
a < pk . Since m and pk are relatively prime, the equation ma ≡
−x mod pk has a unique solution mod pk . Let a0 be such a
solution and u0 = ma0 + x. Then pk | u0 and for the remaining
pk − 1 values u = ma+ x where a ∈ [0, pk) and a 6= a0 , we have
gcd(u, pk) = 1.

Similarly, ai = a0 + ipk is the unique solution mod pk to ma ≡
−x mod pk where ai ∈ [ipk, (i + 1)pk) for i = 1, 2, . . . , pαk−1 − 1.
Let ui = mai + x. Then pk | ui and for the remaining pk − 1
values u = ma+ x where a ∈ [ipk, (i+ 1)pk) and a 6= ai , we have
gcd(u, pk) = 1.

Altogether there are pk − 1 + (pαk−1
k − 1)(pk − 1) = pαk−1

k (pk − 1)
values u = ma+ x where a ∈ [0, pαk) such that gcd(u, pk) = 1.

First, assume pk | s. Let u be one of the values relatively prime
to pk . Then s− u is relatively prime to pk . If not, then pk | s− u.
Since pk | s then pk | u. But this contradicts the fact that u and
pk are relatively prime. So s− u and pk are relatively prime.

We claim that u and s − u are both relatively prime to n when
pk | s. Let d be a common divisor of u and n. Since d | u and
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u and pk are relatively prime then d and pk are relatively prime.
Since d | n, n = mpαkk and m and pk are relatively prime then
d | m. Since d | u, d | m and u = ma+x then d | x. Since d | m,
d | x and x ∈ Rm,s0 then d = 1. Since d was a common divisor
of u and n then u and n are relatively prime. Next, let d be a
common divisor of s − u and n. Since d | s − u and s − u and
pk are relatively prime then d and pk are relatively prime. Since
d | n, n = mpαkk and m and pk are relatively prime then d | m.
So d | m and d | s − u. So d | mq + s0 − (ma + x). That is,
d | m(q−a) +s0−x. Since d | m then d | s0−x. Since x ∈ Rm,s0

and x+ (s0− x) = s0 then s0− x ∈ Rm,s0 . Since d | m, d | s0− x
and s0 − x ∈ Rm,s0 then d = 1. Since d was a common divisor of
s−u and n then s−u and n are relatively prime. This shows that
u ∈ Rn,s . Therefore if pk | s, for each x ∈ Rm,s0 if u = ma + x
and u and pk are relatively prime then u ∈ Rn,s . Since there are
pαkk − pαk−1

k values u relatively prime to pk then

|Rn,s| = (pαkk − pαk−1
k )|Rm,s0| = pαk−1

k (pk − 1)|Rm,s0|.

Second, assume that pk does not divide s. Consider the pk values
u = ma + x where a = 0, 1, 2, . . . , pk − 1. The equation ma ≡
(s−x) mod pk has a unique solution a0 mod pk . So pk | ma0+x−s,
that is, pk | u0 − s where u0 = ma0 + x. And so, pk | s − u0 .
Now pk does not divide u0 . For, if pk | u0 , then, since pk | s− u0 ,
this would imply pk | s, contradicting the assumption that pk does
not divide s. Since pk does not divide u0 , pk and u0 are relatively
prime.

Now u0 /∈ An,s . Otherwise, there exists v0 ∈ Z∗n such that u0 +
v0 ≡ s mod n. So n | u0 + v0 − s. So pk | u0 + v0 − s and
so pk | (u0 − s) + v0 . Since pk | u0 − s then pk | v0 . But this
contradicts the fact that v0 ∈ Z∗n . Thus u0 /∈ An,s . So, among the
pk − 1 values u = ma + x relatively prime to pk with a ∈ [0, pk)
exactly one of them u0 /∈ An,s . The remaining pk − 2 values u
must be in An,s because both u and s− u are relatively prime to
pk .

Similarly, there is exactly one ui = mai + x where

a. ai ∈ [ipk, (i+ 1)pk),
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b. gcd(ui, pk) = 1,
c. pk | s− ui ,
d. ui /∈ An,s .

So, among the pk − 1 values u relatively prime to pk , pk − 2 are
in An,s . The remaining pk − 2 values u must be in An,s because
both u and s− u are relatively prime to pk .

Therefore, if pk does not divide s, altogether there are

pk − 2 + (pαk−1
k − 1)(pk − 2) = pαk−1

k (pk − 2)

values u that are in An,s . Since this is true for each x ∈ Rm,s0

then
|Rn,s| = pαk−1

k (pk − 2)|Rm,s0|.
This completes the proof of the lemma.

3 A Counting Formula

The next result gives a counting formula for |Rn,s| based on the
prime factorization of n.

Theorem 2. Let n ≥ 2 be an integer with prime factorization

n = pα1

1 p
α2

2 · · · p
αk−1

k−1 p
αk
k

where αi > 0 for 1 ≤ i ≤ k and p1 < p2 < · · · < pk is an
increasing sequence of primes (the pi are not necessarily the first k
primes). Let Pn = {pi : 1 ≤ i ≤ k} and Ds = {pi ∈ Pn : pi | s}.
Then

|Rn,s| =

(
k∏

i=1

pαi−1
i

)Ñ ∏

pi∈Ds
(pi − 1)

éÑ
∏

pi∈Pn\Ds
(pi − 2)

é
. (1)

In (1) we assume that if Ds = ∅ or Pn \Ds = ∅ then
∏

pi∈Ds
(pi − 1) = 1 and

∏

pi∈Pn\Ds
(pi − 2) = 1.
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Note that if n is even and s is odd then p1 = 2 ∈ Pn \ Ds .
This means that the third factor in parentheses in (1) contains
(p1−2) = (2−2) = 0 and so |Rn,s| = 0 which agrees with lemma 1.
Now consider the proof of the theorem.

Proof. It is easy to establish the formula for n = 2 and n = 3. By
the induction hypothesis, assume the formula holds for m < n.
Let s ∈ Zn and m = n/pαkk . By the Euclidean algorithm given s
and m there exist integers q and s0 with 0 ≤ s0 < m such that
s = mq + s0 . It is easy to see that Pn = Pm ∪ {pk}, that

Ds =




Ds0 ∪ {pk} if pk | s,
Ds0 otherwise

and that

Pn \Ds =




Pm \Ds0 if pk | s,
(Pm ∪ {pk}) \Ds0 otherwise.

By lemma 2

|Rn,s| =



pαk−1
k (pk − 1)|Rm,s0| if pk | s,
pαk−1
k (pk − 2)|Rm,s0| otherwise.

By the induction hypothesis

|Rm,s0| =
Ñ
k−1∏

i=1

pαi−1
i

éÑ
∏

pi∈Ds0
(pi − 1)

éÑ
∏

pi∈Pm\Ds0
(pi − 2)

é
.

First, suppose pk | s. Then

|Rn,s| = pαk−1
k (pk − 1)

Ñ
k−1∏

i=1

pαi−1
i

éÑ
∏

pi∈Ds0
(pi − 1)

éÑ
∏

pi∈Pm\Ds0
(pi − 2)

é

=

(
k∏

i=1

pαi−1
i

)Ñ ∏

pi∈Ds0∪{pk}
(pi − 1)

éÑ
∏

pi∈Pm\Ds0
(pi − 2)

é

=

(
k∏

i=1

pαi−1
i

)Ñ ∏

pi∈Ds
(pi − 1)

éÑ
∏

pi∈Pn\Ds
(pi − 2)

é
.
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Second, suppose pk does not divide s. Then

|Rn,s| = pαk−1
k (pk − 2)

Ñ
k−1∏

i=1

pαi−1
i

éÑ
∏

pi∈Ds0
(pi − 1)

éÑ
∏

pi∈Pm\Ds0
(pi − 2)

é

=

(
k∏

i=1

pαi−1
i

)Ñ ∏

pi∈Ds0
(pi − 1)

éÑ
∏

pi∈(Pm∪{pk})\Ds0
(pi − 2)

é

=

(
k∏

i=1

pαi−1
i

)Ñ ∏

pi∈Ds
(pi − 1)

éÑ
∏

pi∈Pn\Ds
(pi − 2)

é
.

In both cases the formula holds for n. Therefore, by mathematical
induction the formula holds for all positive integers n ≥ 2. This
completes the proof of the theorem.

Corollary 1. If n is odd and s ∈ Zn then Rn,s 6= ∅.

Proof. The only factor in (1) that can be zero is pi − 2. And so,
pi = 2. Since 2 is the smallest prime then i = 1. That is, p1 = 2.
Since p1|n then 2|n. But n is odd. Hence, no factor in (1) can be
zero. That is, |Rn,s| 6= 0, that is, Rn,s 6= ∅. This completes the
proof of the corollary.

Corollary 2. If p is a prime then Rp,s = Z∗p for all s ∈ Zp .

Proof. By (1) we have |Rp,s| = p1−1(p−1)(1) = p−1 for all s ∈ Zp .
Since Rp,s ⊆ Z∗p and |Z∗p| = p− 1 then Rp,s = Z∗p . This completes
the proof of the corollary.

Consider some examples aided by Mathematica.

Example 3. If n = 24 and s = 6 or s = 10 we have

R24,6 = {1, 5, 7, 11, 13, 17, 19, 23}
R24,10 = {5, 11, 17, 23}.

Now n = 24 = 233, Pn = P24 = {2, 3}. If s = 6 then Ds = D6 =
{2, 3} and Pn \Ds = P24 \D6 = ∅. Formula (1) gives

|R24,6| = (23−131−1)((2− 1)(3− 1))(1) = 8.
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If s = 10 then Ds = D10 = {2} and Pn \ Ds = P24 \ D6 = {3}.
Formula (1) gives

|R24,10| = (23−131−1)(2− 1)(3− 2) = 4.

Example 4. If n = 45 and s = 27 or s = 38 we have

R45,27 = {1, 4, 8, 11, 13, 14, 16, 19, 23, 26, 28, 29, 31, 34, 38, 41, 43, 44}
R45,38 = {1, 4, 7, 16, 19, 22, 31, 34, 37}.
Now n = 45 = 325, Pn = P45 = {3, 5}. If s = 27 then Ds = D27 =
{3} and Pn \Ds = P45 \D27 = {5}. Formula (1) gives

|R45,27| = (32−151−1)(3− 1)(5− 2) = 18.

If s = 38 then Ds = D38 = ∅ and Pn \ Ds = P45 \ D38 = {3, 5}.
Formula (1) gives

|R45,27| = (32−151−1)(1)(3− 2)(5− 2) = 9.

Example 5. Let n = 25200 and s = 196 or s = 6250. The sets
Rn,s are too large to explicitly write out but Mathematica was used
to generate these sets and count the size of the resulting sets to
produce |R25200,196| = 2160 and |R25200,6250| = 2400. Now n =
25200 = 2432527.

If s = 196 = 2272 then Ds = {2, 7} and Pn \Ds = {3, 5}. Formula
(1) gives

|R25200,196| = (24−132−152−17)((2−1)(7−1))((3−2)(5−2)) = 2160.

If s = 6250 = 2155 then Ds = {2, 5} and Pn\Ds = {3, 7}. Formula
(1) gives

|R25200,6250| = (24−132−152−17)((2−1)(5−1))((3−2)(7−2)) = 2400.

4 Counting Equations

Let En,s represent the number of congruence equations s ≡ (x+
y) mod n with s ∈ Zn and x, y ∈ Z∗n . Since x + y = y + x the
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congruence equation s ≡ (y + x) mod n is considered the same
as s ≡ (x + y) mod n when calculating En,s . Note that En,s is
also the number of solutions (either two element sets {x, y} or one
element sets {x} when y = x) to s ≡ (x+ y) mod n.

Lemma 3. Let n ≥ 2 be an integer, s ∈ Zn and e be the number of
one element solution sets, i.e., the number of equations of the form
s ≡ 2x mod n. Then either e = 0, e = 1 or e = 2 and

En,s =
|Rn,s|+ e

2
. (2)

Proof. The formula for calculating En,s follows from the way Rn,s

is defined since each two element solution set {x, y} corresponds
to two elements in Rn,s and each one element set {x} corresponds
to one element in Rn,s . The task is to show that e can only have
the values 0, 1 or 2. If there is no congruence equation of the
form s ≡ 2x mod n then e = 0. So, suppose such an equation is
possible. Then s must be even.

Now either n is odd or even. Suppose n is odd. Since s ≡
2x mod n, we also have 2x ≡ s mod n. Since n is odd, x is the
unique solution mod n. Therefore, in all other equations s ≡
(x+ y) mod n, y 6= x. Consequently, there is exactly one solution
to s ≡ 2x mod n and e = 1. Next, suppose n is even. Since
s ≡ 2x mod n then s

2
≡ x mod n

2
. Consequently, x ≡ s

2
mod n

2
.

Since x and n
2

are relatively prime, x is the unique solution mod
n
2
. And so, there are exactly two solutions mod n to s ≡ 2x mod n,

namely, x1 = x and x2 = x+ n
2
. Moreover, x2 ∈ Z∗n since x ∈ Z∗n .

In this case e = 2. Thus, e can only have the values 0, 1 or 2.
This completes the proof of the lemma.

Consider some examples illustrating formula (2).

Example 6. Let n = 15 and s = 2. Then |R15,2| = 3. The distinct
equations are 2 ≡ (1+1) mod 15 and 2 ≡ (4+13) mod 15. Hence,
E15,2 = 2. Now e = 1 and by (2) we get E15,2 = 3+1

2
= 2.

Example 7. Let n = 15 and s = 9. Then |R15,9| = 6. The distinct
equations are 9 ≡ (1 + 8) mod 15, 9 ≡ (2 + 7) mod 15 and 9 ≡
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(11 + 13) mod 15. Hence, E15,9 = 3. Now e = 0 and by (2) we get
E15,9 = 6+0

2
= 3.

Example 8. Let n = 20 and s = 6. Then |R20,6| = 6. The distinct
equations are 6 ≡ (3 + 3) mod 20, 6 ≡ (13 + 13) mod 20, 6 ≡
(7 + 19) mod 20 and 6 ≡ (9 + 17) mod 20. Hence, E20,6 = 4. Now
e = 2 and by (2) we get E20,6 = 6+2

2
= 4.

Example 9. Let n = 40 and s = 14. Then |R40,14| = 12. The
distinct equations are 14 ≡ (7+7) mod 40, 14 ≡ (27+27) mod 40,
14 ≡ (1+13) mod 40, 14 ≡ (3+11) mod 40, 14 ≡ (17+37) mod 40,
14 ≡ (21+33) mod 40 and 14 ≡ (23+31) mod 40. Hence, E40,14 =
7. Now e = 2 and by (2) we get E20,6 = 12+2

2
= 7.

Theorem 1 and lemma 1 now follow from theoerem 2 and lemma
3. To see this, suppose n is even and s is odd. Then the prime
2 is a factor of n but not a factor of s. In equation (1), p1 = 2.
Since p1 does not divide s, p1 − 2 = 2 − 2 = 0 is a factor in the
product on the right side of equation (1). Consequently, |Rn,s| = 0.
Clearly, the value of e in equation (2) is also zero. Therefore, when
n is even and s is odd there are no solutions to the congruence
s ≡ (x+ y) mod n. In addition to justifying theorem 1 and lemma
1, equations (1) and (2) provide a way of counting the number of
solutions.

5 An Equivalence Relation

Examples indicate that |Rn,s′| = |Rn,s| for many s′ 6= s. Define
relation R on Zn as sRs′ if |Rn,s′| = |Rn,s|. It is easy to see that
R is an equivalence relation. However, this relation sheds little
light on exactly how s and s′ are related to each other. A more
revealing relation can be defined in terms of the factors of s and
s′ .

Consider the set

An,s =

{ {1} if n is even and s is odd
{x : x is a common factor of s and n} otherwise.



Volume 11, No. 2, Autumn 2024 153

Define relation E on Zn as sEs′ if An,s = An,s′ . Again, it is easy
to see that E is an equivalence relation on Zn . Moreover, the
following corollary holds.

Corollary 3. Let s, s′ ∈ Zn and sEs′ . Then |Rn,s′| = |Rn,s|.
Proof. This is a consequence of theorem 2. Let n have prime
factorization n = pα1

1 p
α2
2 · · · p

αk−1

k−1 p
αk
k . As in theorem 2, let Pn =

{pi : 1 ≤ i ≤ k}, Ds = {pi ∈ Pn : pi | s} and Ds′ = {pi ∈ Pn :
pi | s′}. Since sEs′ then An,s = An,s′ . This clearly implies that
Ds = Ds′ . From equation (1) it follows that |Rn,s| = |Rn,s′|. This
completes the proof of the corollary.

Example 10. Consider n = 30. Now R30,0 = Z∗30 and R30,s = ∅ if
s is odd. Otherwise, Mathematica can be used to produce

R30,2 = {1, 13, 19}
R30,4 = {11, 17, 23}
R30,8 = {1, 7, 19}
R30,14 = {1, 7, 13}
R30,16 = {17, 23, 29}
R30,22 = {11, 23, 29}
R30,26 = {7, 13, 19}
R30,28 = {11, 17, 29}
R30,10 = {11, 17, 23, 29}
R30,20 = {1, 7, 13, 19}
R30,6 = {7, 13, 17, 19, 23, 29}
R30,12 = {1, 11, 13, 19, 23, 29}
R30,18 = {1, 7, 11, 17, 19, 29}
R30,24 = {1, 7, 11, 13, 17, 23}.

If s is odd then {1} = A30,s otherwise

{1, 2, 3, 5} = A30,0

{1, 2} = A30,2 = A30,4 = A30,8 = A30,14

= A30,16 = A30,22 = A30,26 = A30,28

{1, 2, 5} = A30,10 = A30,20

{1, 2, 3} = A30,6 = A30,12 = A30,18 = A30,24.
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By corollary 3, |R30,s| all have the same value if s is odd and R30,0

is the only set with size |R30,0|. Otherwise

|R30,2| = |R30,4| = |R30,8| = |R30,14| = |R30,16|
= |R30,22| = |R30,26| = |R30,28|

|R30,10| = |R30,20|
|R30,6| = |R30,12| = |R30,18| = |R30,24|.

What corollary 3 calculates agrees with the size of the sets gener-
ated with Mathematica.

Example 11. Consider n = 15. Now R15,0 = Z∗15 and Mathemat-
ica can be used to produce

R15,1 = {2, 8, 14}
R15,2 = {1, 4, 13}
R15,4 = {2, 8, 11}
R15,7 = {8, 11, 14}
R15,8 = {1, 4, 7}
R15,11 = {4, 7, 13}
R15,13 = {2, 11, 14}
R15,14 = {1, 7, 13}
R15,5 = {1, 4, 7, 13}
R15,10 = {2, 8, 11, 14}
R15,3 = {1, 2, 4, 7, 11, 14}
R15,6 = {2, 4, 7, 8, 13, 14}
R15,9 = {1, 2, 7, 8, 11, 13}
R15,12 = {1, 4, 8, 11, 13, 14}.

Now

{1, 3, 5} = A15,0

{1} = A15,1 = A15,2 = A15,4 = A15,7

= A15,8 = A15,11 = A15,13 = A15,14

{1, 5} = A15,5 = A15,10

{1, 3} = A15,3 = A15,6 = A15,9 = A15,12.
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By corollary 3, R15,0 is the only set with size |R15,0|. Otherwise

|R15,1| = |R15,2| = |R15,4| = |R15,7| = |R15,8|
= |R15,11| = |R15,13| = |R15,14|

|R15,5| = |R15,10|
|R15,3| = |R15,6| = |R15,9| = |R15,12|.

What corollary 3 calculates agrees with the size of the sets gener-
ated with Mathematica.

Example 12. Consider n = 12. Now R12,0 = Z∗12 , R12,s = ∅ if s
is odd and Mathematica can be used to produce

R12,2 = R12,8 = {1, 7}
R12,4 = R12,10 = {5, 11}
R12,6 = Z∗12.

Now

{1, 2, 3} = A12,0 = A12,6

{1} = A12,1 = A12,3 = A12,5 = A12,7 = A12,9

{1, 2} = A12,2 = A12,4 = A12,8 = A12,10.

By corollary 3, R12,s for s odd have the same size. Otherwise

|R12,0| = |R12,6|
|R12,2| = |R12,4| = |R12,8| = |R12,10|.

What corollary 3 calculates agrees with the size of the sets gener-
ated with Mathematica.

6 Goldbach’s Comet

A plot of the number of prime pairs that sum to an even integer
is given in [2]. The graph is called Goldbach’s comet for obvious
reasons.
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Figure 1: Goldbach comet for n ≤ 5000
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Figure 2: Goldbach mod n comet for s = 0 and n ≤ 500

Conclusion

As the above discussion indicates, some interesting results can be obtained by
taking a statement, formula, etc., proven or unproven, that holds for all integers
and reformulating it into a mod n analog. This might be a source for coming
up with a topic for an undergraduate research project. In conclusion, when
examining a mathematical statement see if it can be reformulated into a mod n
version and explore the implications.

author: Joe Santmyer
email: santmyerjoe@yahoo.com
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Fig. 1 shows Goldbach’s comet for n ≤ 5000. There is no analo-
gous 2 dimensional plot for GC mod n since there are 3 parame-
ters, n, s and a count of the pairs relatively prime to n whose sum
is s. However, if s is fixed the points (n, c) where c is a count of
the pairs relatively prime to n that sum to s mod n can be plotted.
A good choice for s is s = 0 since it belongs to all Zn . Fig. 2 shows
such a plot for n ≤ 500. It bares some resemblance to Goldbach’s
comet but the “bands" are more linear in nature.

7 Conclusion

As the above discussion indicates, some interesting results can
be obtained by taking a statement, formula, etc., proven or un-
proven, that holds for all integers and reformulating it into a mod
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n analog. This might be a source for coming up with a topic for an
undergraduate research project. In conclusion, when examining a
mathematical statement see if it can be reformulated into a mod n
version and explore the implications.
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A Portrayal of Integer
Solutions to

Non-homogeneous Ternary
Cubic Diophantine Equation

6(x2 + y2)− 11xy = 2z3

J. Shanthi, N. Thiruniraiselvi and M. A. Gopalan

Abstract

This paper is concerned with the problem of determining vari-
eties of non-zero distinct integer solutions to the non homoge-
neous ternary cubic Diophantine equation 6(x2+y2)−11xy =
2z3 . Different sets of integer solutions to the above equation
are obtained by reducing it to the equation, which is solvable,
through employing suitable transformations and applying the
method of factorization.

1 Introduction

One of the interesting areas of Number Theory is the subject of
Diophantine equations which has fascinated and motivated both
Amateurs and Mathematicians alike. It is well-known that Dio-
phantine equation is a polynomial equation in two or more un-
knowns requiring only integer solutions. It is quite obvious that
Diophantine equations are rich in variety playing a significant role
in the development of Mathematics .The theory of Diophantine
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equations is popular in recent years providing a fertile ground for
both Professionals and Amateurs. In addition to known results,
this abounds with unsolved problems. Although many of its re-
sults can be stated in simple and elegant terms, their proofs are
sometimes long and complicated. There is no well unified body of
knowledge concerning general methods. A Diophantine problem is
considered as solved if a method is available to decide whether the
problem is solvable or not and in case of its solvability, to exhibit
all integers satisfying the requirements set forth in the problem.
The successful completion of exhibiting all integers satisfying the
requirements set forth in the problem add to further progress of
Number Theory as they offer good applications in the field of Graph
theory, Modular theory, Coding and Cryptography, Engineering,
Music and so on. Integers have repeatedly played a crucial role
in the evolution of the Natural Sciences. The theory of integers
provides answers to real world problems.

It is well-known that Diophantine equations, homogeneous or non-
homogeneous, have aroused the interest of many mathematicians.
It is worth to observe that Cubic Diophantine equations fall in to
the theory of Elliptic curves which are used in Cryptography. In
particular, one may refer [2] - [10] for cubic equations with three
and four unknowns.

The main thrust of this paper is to exhibit different sets of integer
solutions to an interesting ternary non-homogeneous cubic equa-
tion given by 6(x2+y2)−11xy = 2z3 by using elementary algebraic
methods. The outstanding results in this study of Diophantine
equation will be useful for all readers.

2 Method of analysis

The non-homogeneous ternary cubic Diophantine equation to be
solved is

6(x2 + y2)− 11xy = 2z3 (1)

Two different approaches of obtaining distinct integer solutions to
(1) are presented below.
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1. Introduction of the linear transformations

x = (u+ v), y = (u− v), u 6= v 6= 0 (2)

in (1) leads to
u2 + 23v2 = 2z3 (3)

The process of obtaining different sets of integer solutions to
(1) is illustrated below:

(a) It is observed that (3) is satisfied by

u = 6α3s, v = 2α3s (4)

and
z = 4α2s (5)

Using (4) in (2) , we get

x = 8α3s, y = 4α3s (6)

Thus, (5) and (6) represent the integer solutions to (1).

Note 1. Choosing suitably the values of u, v in (3), other
solutions to (1) are obtained. For example, the choice

u = 8α3s, v = 4α3s

gives
x = 12α3s, y = 4α3s, z = 6α2s

(b) Taking
u = sv, s ≥ 1 (7)

in (3) leads to
(s2 + 23)v2 = 2z3

which is satisfied by

v = 4(s2 + 23)t3α (8)

and
z = 2(s2 + 23)t2α (9)
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In view of (7) , note that

u = 4s(s2 + 23)t3α (10)

Using (8) and (10) in (2), we get

x = 4 (s2 + 23)(s+ 1)t3s, y = 4 (s2 + 23)2(s− 1)t3s (11)

Thus, (9) and (11) represent the integer solutions to (1).

(c) Taking
v = su, s ≥ 1 (12)

in (3) leads to
(23s2 + 1)u2 = 2z3

which is satisfied by

u = 4(23s2 + 1)t3α (13)

and
z = 2(23s2 + 1)t2α (14)

In view of (12), note that

v = 4s(23s2 + 1)t3α (15)

Using (13) and (15) in (2) , we get

x = 4 (s+1)(23s2 +1)t3α, y = 4 (1−s)(23s2 +1)t3α (16)

Thus, (14) and (16) represent the integer solutions to (1).
(d) Taking

v = sz (17)

in (3), it is written as

u2 = z2(2z − 23s2) (18)

which is satisfied by

z = (2k2 − 2k + 12)s2 (19)

and
u = (2k − 1)(2k2 − 2k + 12)s3 (20)
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In view of (17) note that

v = (2k2 − 2k + 12)s3 (21)

Using (20) and (21) in (2) , we have

x = 2k(2k2−2k+12)s3, y = (2k−2)(2k2−2k+12)s3 (22)

Thus, (19) and (22) represent the integer solutions to (1).

(e) Taking
u = sz (23)

in (3) , it is written as

23v2 = z2(2z − s2) (24)

which is satisfied by

z = (46k2 − 46k + 12)s2 (25)

and
v = (2k − 1)(46k2 − 46k + 12)s3 (26)

In view of (23) note that

u = (46k2 − 46k + 12)s3 (27)

Using (26) and (27) in (2), we have

x = 2k(46k2−46k+12)s3, y = (2−2k)(46k2−46k+12)s3

(28)
Thus, (25) and (28) represent the integer solutions to (1).

(f) Assume
z = a2 + 23b2 (29)

Express the integer 2 on the R.H.S. of (3) as the product
of complex Conjugates as follows

2 =
(3 + i

√
23)(3− i√23)

16
(30)
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Substituting (29) and (30) in (3) and employing the method
of factorization,
consider

u+ i
√

23v =
3 + i

√
23

4
(a+ i

√
23b)3 (31)

Equating the real and imaginary parts in (31) , the values
of u, v are found.
In view of (2) ,the corresponding integer values of x, y, z
satisfying (1) are given by

x = 8(a3 − 69ab2)− 40(3a2b− 23b3),

y = 4(a3 − 69ab2)− 52(3a2b− 23b3),

z = 4(a2 + 23b2)

(32)

Note 2. Apart from (30), one may consider the integer 2
on the R.H.S. of (3) as

2 =
(7 + i

√
23)(7− i√23)

36
, 2 =

(25 + i
√

23)(25− i√23)

324

Giving different sets of integer solutions to (1).

(g) Write (3) as
u2 + 23v=2z3 · 1 (33)

Express the integer 1 on the R.H.S. of (33) as the product
of complex conjugates as below :

1 =
(11 + i

√
23)(11− i√23)

144
(34)

Substituting (29), (30) and (34) in (33) and employing the
method of factorization, consider

u+ i
√

23v =
(3 + i

√
23)(11 + i

√
23)

12
(a+ i

√
23b)3

from which , on equating the real and imaginary parts ,
we get the values of u, v . In view of (2), the corresponding
integer values of x, y, z satisfying (1) are given by

x = 6 · 122[(a3 − 69ab2)− 13(3a2b− 23b3)],
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y = 122[−(a3 − 69ab2)− 83(3a2b− 23b3)],

z = 122(a23 + 23b2)

Note 3. Apart from (34), one may consider the integer 1
on the R.H.S. of (3) as

1 =
(7 + i3

√
23)(7− i3√23)

256

1 =
(23r2 − s2 + i

√
23rs)((23r2 − s2 − i√23rs))

(23r2 + s2)2

giving different sets of integer solutions to (1).

Note 4. By considering different combinations for the
integers 2, 1 on the R.H.S. of (33) from Note 2 and Note 3
correspondingly, other sets of integer solutions to (1) are
obtained.

2. Treating (1) as a quadratic in and solving for, one obtains

x =
11y ±√48z3 − 23y2

12
(35)

It is possible to choose y, z so that the square-root on the
R.H.S. of (35) is removed and the corresponding value of x is
an integer. For brevity, a few examples are exhibited in Table
1 below:

Table 1: Examples

x y z
36s3 27s3 9s2

20s3 8s3 8s2

−18s3 27s3 18s2

288s3 216s3 36s2

44s3 24s3 12s2

However, to eliminate the square-root on the R.H.S. of (35) ,
one may also employ the following process:
Assume
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α2 + 23y2 = 48z3 (36)

Write the integer 48 on the R.H.S. of (36) as the product of
complex conjugates as below :

48 = (5 + i
√

23)(5− i
√

23) (37)

Substituting (29) and (37) in (36) and employing the method
of factorization,
define

α+ i
√

23y = (5 + i
√

23)(a+ i
√

23b)3

Following the procedure as in Illustration 6 , the corresponding
two sets of integer solutions to (1) are found to be:

Set 1:
x = 36

Ä
a3 − 69ab2

ä
+ 72

Ä
3a2b− 23b3

ä
,

y = 27
îÄ
a3 − 69ab2

ä
+ 5

Ä
3a2b− 23b3

äó
,

z = 9
Ä
a2 + 23b2

ä

Set 2:
x = 4

Ä
a3 − 69ab2

ä
+ 52

Ä
3a2b− 23b3

ä
,

y = 8
îÄ
a3 − 69ab2

ä
+ 5

Ä
3a2b− 23b3

äó
,

z = 4
Ä
a2 + 23b2

ä

Note 5. In addition to (37), one may write 48 as below:

48 =
(13 + i

√
23)(13− i

√
23)

4
,

48 =
(8 + i4

√
23)(8− i4

√
23)

9

For these choices, different sets of integer solutions to (1) are
obtained.

3 Conclusion

In this paper, we have made an attempt to find infinitely many
non-zero distinct integer solutions to the non- homogeneous cubic
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equation with three unknowns given by 6(x2 + y2)− 11xy = 2z3 .
To conclude, one may search for other choices of solutions to the
considered cubic equation with three unknowns and higher degree
Diophantine equations with multiple variables.
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Problems
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical problems. Proposals
are always welcome. Please observe the following guidelines when
submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on
separate sheets, each indicating the name and address of the
sender. Drawings must be suitable for reproduction.

2. Proposals should be accompanied by solutions. An asterisk (*)
indicates that neither the proposer nor the editor has supplied
a solution.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

The section is divided into four subsections: Elementary Problems,
Easy–Medium High School Problems, Medium–Hard High School
Problems, and Advanced Problems mainly for undergraduates.
Proposals that appeared in Math Contests around the world and
most appropriate for Math Olympiads training are always welcome.
The source of these proposals will appear when the solutions are
published.

Solutions to the problems stated in this issue should be posted
before

April 30, 2025
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Elementary Problems

E–131. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let α, β, γ be real numbers. If cosα + cosβ + cos γ = 0 and
sinα+ sinβ + sin γ = 0, then prove that

sin 5α+ sin 5β + sin 5γ

cos 5α+ cos 5β + cos 5γ
= tan(α+ β + γ).

E–132. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let ABC be a triangle with D an arbitrary point chosen on AC
and the circumcircle Γ . If the circumcircle Ω1 of the triangle BDC
cut AB in E , the circumcircle Ω2 of the triangle ABD cut BC in
F and AE = CE , show that

AB +BC

AC
=
BX

XA
.

E–133. Proposed by José Luis Díaz-Barrero, Barcelona, Spain
and José Gibergans-Báguena, BarcelonaTech, Terrassa, Spain. Let
a, b, c be positive reals such that a+ b+ c = abc. Prove that

a

1 + bc
+

b

1 + ca
+

c

1 + ab
≥ a+ b+ c

4
.

E–134. Proposed by Michel Bataille, Rouen, France. Let n be a
nonnegative integer. Prove that

n∑

k=0

(
2n

2k

)
288k289n−k =

4n∑

k=0

(
8n

2k

)
2k.

E–135. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
a, b, n be integers such that 0 < a ≤ b < n. Prove that there exist

a prime p that divides both
(
n

a

)
and

(
n

b

)
.
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E–136. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
` be a line that divides triangle ABC into two parts. Prove that `
divides the area and the perimeter of ABC in the same proportion
if and only if ` passes through the incenter of triangle ABC .
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Easy–Medium Problems

EM–131. Proposed by Michel Bataille, Rouen, France. Let ABC
be a triangle neither equilateral nor right-angled and let O be
its circumcentre. Let A′, B′, C′ be the respective reflections of
A,B,C about O and let U, V, and W be the circumcentres of
∆OB′C′,∆OC′A′, and ∆OA′B′ , respectively. Prove that the lines
AU,BV,CW are concurrent.

EM–132. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
a, b be positive integers such that (a, b) = d. Prove that

ϕ(d)

d
≤ 1

2

(
ϕ2(a) + ϕ2(b)

ϕ(ab)

)
,

where ϕ(n) is the Euler’s totient function.

EM–133. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find all real solutions of the equation
√
x+ 3
√
x+ 4
√
x+ 5
√
x+ . . .+ 2024

√
x = 2025

»
x+ 20242025 − 1.

EM–134. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a non-right triangle with AB 6= AC and let H be its
orthocenter, G be its centroid, K be its symmedian point. Let
Hb,Hc be the feet of the altitudes drawn from B,C respectively.
Let M,E be the midpoints of BC,HbHc respectively and let D
be the foot of the perpendicular from M to the line GH . Let
K1 = AK ∩ BC . Knowing that G lies on HbHc , prove that the
points M,D,E,K1 are concyclic.

EM–135. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Com-
pute the value of

cos

Ç
2π

17

å
cos

Ç
4π

17

å
cos

Ç
6π

17

å
. . . cos

Ç
16π

17

å
.
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EM–136. Proposed by Michel Bataille, Rouen, France. Let a, b,
and c be positive real numbers such that abc ≥ 1. Prove that

a

(a+ b)(a+ c)
+

b

(b+ c)(b+ a)
+

c

(c+ a)(c+ b)
≤ (a+ b+ c)2

12
.
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Medium–Hard Problems

MH–131. Proposed by Miquel Amengual Covas, Cala Figuera,
Mallorca, Spain. On the sides AB , BC , CA of a triangle ABC
points C′ , A′ , B′ are marked respectively. It turns out that

AC′

AB
=
BA′

BC
=
CB′

CA
=

1

3
.

Prove that:

1. The sides of 4A′B′C′ are parallel to the medians of 4ABC
and 2

3
as the length of the correspondent median.

2. Each of the sides of 4A′B′C′ is trisected by two medians of
4ABC .

3. Each of the medians of 4A′B′C′ is parallel to a side of
4ABC .

MH–132. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let Sn denote the set of all permutations of {1, 2, . . . , n}. Show
that the number

N =
3

n!

∑

σ∈Sn

n∑

k=1

|k − σ(k)|

is an integer number and determine its value.

MH–133. Proposed by Titu Zvonaru, Comănesţi, Romania. Let
a, b, c be positive real numbers such that ab+ bc+ ca = 3. Find
the greatest k such that the following inequality holds:

a2 + b2

a+ b+ 2
+

b2 + c2

b+ c+ 2
+

c2 + a2

c+ a+ 2
≥ k

4
(a+ b+ c)− (3k − 6)

4
.

MH–134. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a non-right triangle with AB 6= AC . Let H be its or-
thocenter, O be its circumcenter, Ma,Mb,Mc be the midpoints
of the sides BC,CA,AB respectively, and Ha,Hb,Hc be the feet
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of the altitudes drawn from A,B,C respectively. Let D be the
intersect point of AO and BC , N be the midpoint of OH and N0

be the reflection of N in BC . Let M0 be the midpoint of AMa

and H0 be the intersect point of HbHc and MbMc . Knowing that
AB ·AC = 4 ·AHa ·AD , prove that the points A,N0,M0,H0 are
concyclic.

MH–135. Proposed by Vasile Cîrtoaje, Petroleum-Gas University
of Ploiesţi, Romania Romania. Let a ≥ b ≥ c ≥ 1 ≥ d ≥ e ≥ 0
such that ab+ bc+ cd+ de+ ea = 5. Prove that

1

a+ 3
+

1

b+ 3
+

1

c+ 3
+

1

d+ 3
+

1

e+ 3
≥ 5

4
.

MH–136. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. If
a > b > 1 are integers such that (a+b)|(ab+1) and (a−b)|(ab−1),
then prove that a < b

√
3.
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Advanced Problems

A–131. Proposed by Mihaela Berindeanu, Bucharest, Romania.
For x > 0, calculate

lim
x→∞

x+1∫

[x]

(sin t)2025

t2 + 4
dt.

A–132. Proposed by Vasile Mircea Popa, Affiliate Professor, "Lu-
cian Blaga" University of Sibiu, Romania. Calculate the following
integral: ∫ ∞

0

arctan(x)
3
√
x6 + 1

dx.

A–133. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let ABC
be a triangle with side lengths BC = a,CA = b,AB = c, centroid
G and circumcircle Γ with circumcenter O . Let D be the reflection
of G in the line BC and E be the second intersect point of AG
and Γ. Knowing that AG = DE , find the maximum possible value
of

S =
(a+ b+ c)(a3 + b3 + c3)

a4 + b4 + c4

and determine where the maximum holds.

A–134. Proposed by Michel Bataille, Rouen, France. Let Fm be
the m-th Fibonacci number (F0 = 0, F1 = 1 and Fm+1 = Fm +
Fm−1 for m ≥ 1). Let

An =
n∑

k=1

k

Fn+1−kFn+3−k
(n ≥ 1) and S =

∞∑

k=1

1

FkFk+1

.

Prove that
lim
n→∞(An − n) = 1− S.

A–135. Proposed by José Lui Díaz-Barrero, Barcelona, Spain.
Let {xn}n≥0 and {yn}n≥0 be sequences of real numbers satisfying

x2
n+y2

n+x2
n−1+y2

n−1 = (ynxn−1−xnyn−1)+
√

3(xnxn−1+ynyn−1).
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Show that they are periodic and determine their periods.

A–136. Proposed by José Lui Díaz-Barrero, Barcelona, Spain and
Óscar Rivero Salgado, Santiago de Compostela, Spain. Find all n-
tuples (a1, a2, . . . , an) of positive integers such that

(a1!− 1)(a2!− 1) . . . (an!− 1) = 42 + k2,

where k is an integer number.
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Mathlessons
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical notes and lessons
with material useful to solve mathematical problems.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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The W function and some of
its applications

Simone Camosso

Abstract

In this short paper we examine the definition of the Lambert
function and some applications in different fields as: algebra,
chemistry and quantum statistic. The “potentiality” of this ma-
thematical tool seems have no limit in recent years.

1 Introduction

The special function W (x) was introduced by J. H. Lambert (1758
in [9], [8] according to [7]) in order to solve the equation:

xm − x = q, (1)

where m = 1, 2, 3, . . . and q is fixed. The solution of (1) is ex-
pressed as a power series respect q . The function W (x) was called
the “Lambert function” and the equation (1) the Lambert equa-
tion. In a second moment, L. Euler [4] symmetrized the Lambert
equation in the following form:

xα − xβ = (α− β)vxα+β, (2)

with x 7→ x−β , m = αβ and q = (α− β)v .

The Lambert function W is related to an important mathemati-
cal operation called the tetration operation. The tetration is an
operation defined for x > 0 as

αx = xx
x·
··
x

, (3)
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where α = 0, 1, 2, 3, . . . is called the level of the “power tower”
(with 0x = 1). The reader interested in the tetration operation can
read the accurate article of [1]. The case of infinite tetration +∞x
is treated in [5], [6] and [3].

The tetration operation has different properties: it is not an asso-
ciative operation, always evaluated for top to bottom, and admits
an inverse function that is W . Il particular the Lambert function
W satisfy the interesting equation:

W (x)eW (x) = x. (4)

For this connection to the tetration operation, the Lambert function
can be used to solve various exponential and logarithmic equations
of self-exponential nature. Details on the relation between W (x)
and the tetration operation are in [2] and [4]. Let us examine
the graph of the Lambert function. First, for x ∈ R the function
W has two possible values for x ∈

î
−1
e
, 0
ä
. The branch where

W (x) > −1 will be called W0(x) or simply W (x) and, the branch
where W (x) < −1, will be denoted with W−1(x). In the figures are
represented the two graph of respective branches using GeoGebra
(respectively Figure 1 and Figure 2).
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αx = xxxx

, (3)

where α = 0, 1, 2, 3, . . . is called the level of the “power tower”
(with 0x = 1). The reader interested in the tetration operation can
read the accurate article of [C]. The case of infinite tetration +∞x
is treated in [G], [K] and [Eu1].

The tetration operation has different properties: it is not an asso-
ciative operation, always evaluated for top to bottom, and admits
an inverse function that is W . Il particular the Lambert function
W satisfy the interesting equation:

W (x)eW (x) = x. (4)

For this connection to the tetration operation, the Lambert function
can be used to solve various exponential and logarithmic equations
of self-exponential nature. Details on the relation between W (x)
and the tetration operation are in [Ed] and [Eu2]. Let us examine
the graph of the Lambert function. First, for x ∈ R the function
W has two possible values for x ∈

î
−1

e
, 0
ä
. The branch where

W (x) > −1 will be called W0(x) or simply W (x) and, the branch
where W (x) < −1, will be denoted with W−1(x). In the figures are
represented the two graph of respective branches using GeoGebra
(respectively Figure 1 and Figure 2).

Figure 1: W0

Second, the function W is analytic in z = 0 and admits the
following power expansion:

Figure 1: W0

Second, the function W is analytic in z = 0 and admits the
following power expansion:

W (z) =
+∞∑

j=1

(−j)j−1

j!
zj = z − z2 +

3

2
z3 + . . . (5)
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Figure 2: W−1

W (z) =
+∞∑

j=1

(−j)j−1

j!
zj = z − z2 +

3

2
z3 + . . . (5)

Third, the inverse of the Lambert function can be expanded as:

W−1(z) = zez =
+∞∑

j=0

zj+1

j!
= z + z2 +

z3

2!
+

z4

3!
. . . (6)

2 The results

In what follows the main results of this paper are presented.

2.1 Pythagorean Theorem

In this section we consider an alternative version of the pythagorean
theorem.

Figure 2: W−1

Third, the inverse of the Lambert function can be expanded as:

W−1(z) = zez =
+∞∑

j=0

zj+1

j!
= z + z2 +

z3

2!
+
z4

3!
. . . (6)
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2 The results

In what follows the main results of this paper are presented.

2.1 Pythagorean Theorem

In this section we consider an alternative version of the pythagorean
theorem.

Proposition 1. Let (a, b, c) be a pythagorean triple, then

(x, y, z) =
Ä
eW (2 ln(a)), eW (2 ln(b)), eW (2 ln(c))

ä
(7)

is a point of the surface Σ generated by the equation:

xx + yy = zz. (8)

Let us consider the following equation:

xx = a2.

It is equivalent to x lnx = ln a2 and, by the substitution x = elnx

we have that:
elnx lnx = 2 ln a.

Thus we find that x = eW (2 ln a) . The same can be done for
yy = b2 and zz = c2 , proving the proposition.

2.2 Tetrated quadratic equations

Let us consider an equation of the following form:

ax2x + bxx + c = 0, (9)

where a, b, c ∈ R. We can try a substitution setting t = xx

recovering an equation of second order of the form:

at2 + bt+ c = 0. (10)
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Now, if we try to solve the equation we have three cases: the
equation is impossible in R. Second, we have the solution t = − b

2a
.

Third we have two solutions t1,2 =
−b±
√
b2−4ac

2a
. If the quantity t or

t1,2 are strictly positive we can try to solve an elementary equation
of the form:

xx = − b

2a
, (11)

for the second case or,
xx = t1,2 (12)

for the third case finding all the solution (or solutions).

Example 1. Let us consider the equation:

x2x − 3xx + 2 = 0. (13)

By the substitution we have to solve t2 − 3t + 2 = 0. This is
equivalent to (t − 1)(t − 2) = 0, then t1 = 1 and t2 = 2. From
xx = 1 we have that x = 1 and, from xx = 2 we have that
x = eW (ln 2) .

2.3 Chemistry: equilibrium asymptotic ex-
pansion of concentrations

Let us consider a simple chemical reaction at equilibrium:

A↔ B. (14)

The quantity A is the reactant and B is the product of the chemical
reaction (14). In this case the stoichiometric coefficients α and β
are simply 1. If the reaction is in equilibrium, the following first
order differential equation holds:

− d[A]

dt
= k[A], (15)

where [A] is the concentration of the reactant A and k the equilib-
rium constant. The solution is given by the exponential:

[A](t) = [A0]e
−kt, (16)
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where [A0] is the value of initial concentration of A. Now, this
other equation must be true:

[A](t) = [A0]e
− [B]

[A]
t. (17)

We can try to solve the equation (17) by the Lambert function W ,
we have that:

1 =
[A0]

[A]
e−

[B]
[A]
t ⇔ [B]

[A0]
t =

[B]

[A]
te−

[B]
[A]
t,

so by the definition of W :

− [B]

[A]
t = W

(
− [B]

[A0]
t

)
.

If we expand in power series W , we find that:

[A](t) =
[B]t

[B]
[A0]
t+ [B]2

[A0]2
t2 + 3

2
[B]3

[A0]3
t3 + . . .

, (18)

that is:

[A](t) =
1

1
[A0]

+ [B]
[A0]2

t+ 3
2

[B]2

[A0]3
t2 + . . .

. (19)

We observe that if t = 0 then [A] = [A0] and, second now [A](t) is
now a function of two variables [B] and t. In the following figure
(Figure 3) there is a graph of the function [A](t, [B]).

We observe that if t→ 0 then [A]→ [A0] (that we fixed to 1 in the
graph elaborated by GeoGebra).

2.4 Physics: Quantum Statistic

In this section let us consider some arbitrary physical quantity M

that can be expressed as a “generalized” moments of the Energy

E :

M = A
∫ +∞
0

h(E)dE, (20)
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2.4 Physics: Quantum Statistic

In this section let us consider some arbitrary physical quantity M
that can be expressed as a “generalized” moments of the Energy
E :

M = A
∫ +∞
0

h(E)dE, (20)

where

h(E) =
Ef(r)

eβE+α + γ
,

f(r) is a real valued continuous positive function, A ∈ R is fixed,
β = 1

kT
with T the temperature and k is the Boltzmann constant

and at the end, α, r and γ are parameters.

The problem, as treated in [VGJB], is to find extrema in E . Assume
E to be a continuous variable and we fix the parameters α, r , T

Figure 3: [A](t, [B])

where

h(E) =
Ef(r)

eβE+α + γ
,

f(r) is a real valued continuous positive function, A ∈ R is fixed,
β = 1

kT
with T the temperature and k is the Boltzmann constant

and at the end, α, r and γ are parameters.

The problem, as treated in [10], is to find extrema in E . Assume

E to be a continuous variable and we fix the parameters α, r , T

and γ . Now the problem is to find the extrema in E on the interval

(0,+∞). Let us consider the partial derivative of h:

∂Eh(E) =
f(r)Ef(r)−1 ·

(
eβE+α + γ

)
− βEf(r)eβE+α

[eβE+α + γ]
2 ,

We want to find the solution of this trascendental equation:

f(r)Ef(r)−1 ·
Ä
eβE+α + γ

ä
− βEf(r)eβE+α = 0.

By algebraic manipulations, we have to solve:

βEeβE+α − f(r)eβE+α = f(r)γ.
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We can multiply both sides by e−f(r)−α so we have that:

[βE − f(r)]eβE−f(r) = f(r)γe−f(r)−α. (21)

The equation (21) can be solved using the W function. Thus we

can find the following critical value for the energy E :

E = kT
[
f(r) +Wj

(
f(r)γe−f(r)−α

)]
, (22)

where j ∈ {0,−1} (Details can be found in [10]).

2.5 On trascendental equations

Through algebraic manipulations it is possible to find impressive
results on equations that classically doesn’t have a closed form
solution. For example let us consider the following theorem.

Theorem 1. Let a > 1 be a natural number, the equation:

ax = xa, (23)

has the following formal solution:

x = e−W(− ln a
a ). (24)

Proof. We can start the proof taking the ln to both sides of (23),
so we have that:

x ln a = a lnx.

The last equation is equivalent to the following expression:

ln a

a
=

lnx

x
.

Now, let us consider the substitution x = e−t , we have that:

ln a

a
= −t · et,
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so we find that:

t = W

Ç
− ln a

a

å
,

or
x = e−W(− ln a

a ).

Example 2. Another interesting example not considered in the pre-
vious theorem is the equation:

2x =
1

x
.

It is a simple exercise to find the solution: x = W (ln 2)

ln 2
. The reader

can try it!
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Contests
In this section, the Journal offers sets of problems appeared in
different mathematical contests over the world, as well as their
solutions. This gives readers an opportunity to find interesting
problems and develop their own solutions.

No problem is permanently closed. We will be very pleased to
consider new solutions to problems posted in this section for pub-
lication. Please, send submittals to José Luis Díaz-Barrero, En-
ginyeria Civil i Ambiental, UPC BARCELONATECH, Jordi Girona
1-3, C2, 08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Problems and solutions from
the 2nd edition of the

Barcelona Spring
Matholympiad

O. Rivero Salgado and J. L. Díaz-Barrero

1 Problems and solutions

Hereafter, we present the four problems that appeared in the paper
given to the contestants of the Barcelona Spring Matholympiad, as
well as their official solutions.

Problem 1. Consider a permutation (a1, a2, . . . , a2021) of the
numbers (1, 2, . . . , 2021). Find the minimum and the maximum
value that can take the expression

a2
1 + . . .+ a2

8 + a9a10 . . . a2021.

Solution. Consider the sequence for which that value is maxi-
mum. Without loss of generality we may assume that a1 > a2 >
. . . > a8 and that a9 < . . . < a2021 . Let us suppose that a1 > a9

and reach a contradiction by swapping the values of a1 and a9 . In
particular, we will prove that

a2
9 + . . .+ a2

8 + a1a10 · · · a2021 > a2
1 + . . . a2

8 + a9a10 · · · a2021.

This is equivalent to

(a1 − a9)a10 · · · a2021 > (a1 + a9)(a1 − a9).
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But once we divide by a1 − a9 , this follows by observing that

a10 · · · a2021 > 2011! > 4042 > a1 + a9.

Then, the maximum value is

12 + 22 + . . .+ 82 + 9 · 10 · · · 2021.

The same argument shows that the minimum is attained when the
numbers (a1, . . . , a8) correspond to (2014, . . . , 2021). Then, the
minimum values is

20142 + . . .+ 20212 + 1 · 2 · · · 2013.

Problem 2. Let ABC be an acute-angled triangle and let H be
its orthocenter If ha, hb and hc are the lengths of the corresponding
altitudes, then prove that

AH +BH + CH

2
≤ max{ha, hb, hc}.

Solution 1. Let ∠C be the smallest angle, so that CA ≥ AB and
CB ≥ AB . In this case hc the altitude through C is the longest
one. Let the altitude through C meet AB in D and let H be the
orthocentre of 4ABC . Let CD extended meet the circumcircle of
4ABC in point K .

We have hc = CD so that the inequality to be proven is

AH +BH + CH ≤ 2CD.

On account that CD = CH + HD , the above reduces to AH +
BH ≤ CD + HD . Since K is the symmetric of H respect to D
then we have HD = DK and also that right triangles DBK and
DBH are similar. So, BH = BK . Likewise, we have AH = AK .

Thus we need to prove that AK +BK ≤ CK . Applying Ptolemy’s
theorem to the cyclic quadrilateral BCAK , we get

AB · CK = AC ·BK +BC ·KA.
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Problem

Let ABC be an acute-angled triangle and let H be its orthocenter If ha, hb

and hc are the lengths of the corresponding altitudes, then prove that

AH + BH + CH

2
≤ max{ha, hb, hc}.

Solution. Let ∠C be the smallest angle, so that CA ≥ AB and CB ≥ AB.
In this case hc the altitude through C is the longest one. Let the altitude
through C meet AB in D and let H be the orthocentre of 4ABC. Let CD
extended meet the circumcircle of 4ABC in point K.

K
D

H

CB

A

Scheme for solving problem 8.

We have hc = CD so that the inequality to be proven is

AH + BH + CH ≤ 2CD.

On account that CD = CH+HD, the above reduces to AH+BH ≤ CD+HD.
Since K is the symmetric of H respect to D then we have HD = DK and also
that right triangles DBK and DBH are similar. So, BH = BK. Likewise,
we have AH = AK.

Thus we need to prove that AK + BK ≤ CK. Applying Ptolemy’s theorem
to the cyclic quadrilateral BCAK, we get

AB · CK = AC ·BK + BC ·KA.

On account that CA ≥ AB and CB ≥ AB, we have

AB · CK ≥ AB ·BK + AB · AK
from which AK + BK ≤ CK follows.

Scheme for solving problem 2.

On account that CA ≥ AB and CB ≥ AB , we have

AB · CK ≥ AB ·BK +AB ·AK

from which AK +BK ≤ CK follows.

Solution 2. We first note that AH = 2R cosα, and similarly for
the other lengths BH and CH . Using that ha = c sinβ = b sin γ ,
the statement is equivalent to

R(cosα+cosβ+cos γ) ≤ 2Rmax{sinβ sin γ, sin γ sinα, sinα sinβ}.

Without loss of generality, we may assume that a ≥ b ≥ c, and
therefore sinα ≥ sinβ ≥ sin γ . By virtue of the cosine rule, the
inequality we want to prove may now be rewritten as

a2b+ a2c+ b2c+ b2a+ c2a+ c2b− a3 − b3 − c3
2abc

≤ 2 sinα sinβ =
8S2

abc2
,

where the last equality follows from the relations a = 2R sinα,
b = 2R sinβ and abc = 4SR. Here, as usual, S is the area of
the triangle. Using now Heron’s formula, we may write 16S2 as
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a function of the sides a, b and c, and the inequality is then
equivalent to

a2bc+ a2c2 + b2c2 + b2ca+ c3a+ c3b− a3c− b3c− c4

≤ 2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4.
But rearranging the terms, this is the same as

a3(c−a)+b3(c−b)+bc2(b−c)+ac2(a−c)+ab2(a−c)+ba2(b−c)

= (a− c)a(b2 + c2 − a2) + (b− c)b(b2 + c2 − a2) ≥ 0,

which clearly holds since a, b ≥ c (by assumption), and b2+c2 ≥ a2

since the triangle is acute-angled.

Problem 3. Let a, b and c be positive integers for which a | b2, b | c2 ,
c | a2 hold. Determine whether or not the following statements are
true or false, justifying your answer:

(a) All numbers a, b, c that satisfy the above conditions also verify
that abc divides (a+ b+ c)6?

(b) All numbers a, b, c that satisfy the above conditions verify that
abc divides (a+ b+ c)7?

Solution. (a) The answer is NOT. Indeed, triple a = 4, b = 2, c =
16 is a counterexample. We can see that 4 | 22, 2 | 162 , and 16 | 42 ,
but abc = 27 does not divide (a+ b+ c)6 = 226 .

(b) Expanding (a+ b+ c)7 , we get the following sum:

(a+ b+ c)7 =
∑

i+j+k=7

(
7

i, j, k

)
aibjck =

∑

i+j+k=7

7!

i!j!k!
aibjck,

where 0 ≤ i, j, k ≤ 7 and each
Ä

7

i,j,k

ä
is some positive integer. We

will show that each term in the above sum is divisible by abc. We
distinguish the following cases:

1. If i, j, k ≥ 1, then abc | aibjck obviously holds.
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2. If two of i, j, k are 0, then we can assume i = j = 0 and so
k = 7. From b | c2 we get b2 | c4 and so a | b2 | c4 . Therefore
abc | c4 · c2 · c = c7 = aibjck . The other two cases follow by an
analogue reasoning.

3. If exactly one of i, j, k is 0, then we can assume it is i. In
this case j + k = 7. If j ≥ 3, then ab | bj and c | ck , therefore
abc | bjck = aibjck . If j ≤ 2, then k ≥ 5. In this case ac | c4 ·
c | ck and b | bj , so again abc | bjck = aibjck .

Problem 4. Let x, y be two relatively prime positive integers
and p ≥ 3 be a prime number. Compute

gcd

Ç
x+ y,

xp + yp

x+ y

å
.

Solution. We attempt to simplify the problem to the case when
y = 1. Our goal is to compute

gcd

Ç
x+ 1,

xp + 1

x+ 1

å
.

Factoring gives

xp + 1

x+ 1
= xp−1 − xp−2 + xp−3 − xp−4 + . . .− x+ 1.

In order to calculate

gcd

Ç
x+ 1,

xp + 1

x+ 1

å
,

we attempt to reduce the above expression mod x+ 1. Using the
fact that p is an odd prime, we know that p− 1 is even, therefore

xp + 1

x+ 1
= xp−1 − xp−2 + . . .+ x2a − x2a−1 + . . .− x+ 1

≡ (−1)p−1 − (−1)p−2 + . . .+ (−1)2a − (−1)2a−1 + . . .− x+ 1

≡ 1 + 1 + . . .+ 1 + 1︸ ︷︷ ︸
p

≡ p (mod x+ 1)
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Now, by the Euclidan Algorithm, we have

gcd

Ç
x+ 1,

xp + 1

x+ 1

å
= gcd(x+ 1, p).

Since p is a prime, the above expression can only be equal to 1 or
p, depending on x. We have now solved the problem for y = 1. We
wish to generalize the method to any y .

Using a similar factorization as above, we have

xp + yp

x+ y
= xp−1 − xp−2y + xp−3y2 − xp−4y3 + . . .− xyp−2 + yp−1.

In order to invoke the Euclidean Algorithm, we wish to evaluate
this expression mod x+y . Using the fact that x ≡ −y (mod x+y)
and that p− 1 is even, we can simplify as follows:

xp−1 − xp−2y + . . .− xyp−2 + yp−1 ≡ (−y)p−1 − (−y)p−2 + . . .+ yp−1

≡ (−1)p−1

Ö

yp−1 + yp−1 + . . .+ yp−1

︸ ︷︷ ︸
p

è

≡ pyp−1 (mod x+ y)

Therefore, by the Euclidean Algorithm, we arrive at

gcd

Ç
x+ y,

xp + yp

x+ y

å
= gcd(x+ y, pyp−1).

Now, in the problem statement, it was given that x and y are
relatively prime. Hence, similarly, gcd(x+ y, y) = 1, and we can
simplify the above expression further:

gcd

Ç
x+ y,

xp + yp

x+ y

å
= gcd(x+y, pyp−1) = gcd(x+y, p) = 1 or p,

depending on whether p divides x+ y or not.
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Solutions
No problem is ever permanently closed. We will be very pleased to
consider new solutions or comments on past problems for publica-
tion.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

Elementary Problems

E–125. Proposed by José Luis Díaz-Barrero, Barcelona, Spain. If
α is an irrational number then prove that α17 and α19 cannot be
both rational numbers.

Solution 1 by Titu Zvonaru, Comănesţi, and Daniel Văcaru,
“Maria Teiuleanu” National Economic College, Pites, ti, both in
Romania (same solution). Suppose that α17 and α19 are ratio-
nal numbers. Then α17/α19 = α2 is a rational number, and
α17/(α2)8 = α is also a rational number. Contradiction!

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
Purchase, NY, USA and Titu Zvonaru, Comănesţi, Romania
(same solution). We generalize this result, assuming that α is
irrational, p, q are any relatively prime numbers, and αp, αq are
rational. Since p and q are relatively prime, there exist integers b
and c such that pb+ qc = 1. Then

α = αpb+qc = (αp)b · (αq)c
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is a rational number because αpb, αqc , and their product must be
rational. This contradiction establishes the result.

Solution 3 by the proposer. First, we observe that if α is rational,
say α = p/q with (p, q) = 1, then for all integer m ≥ 1, the power

αm =

Ç
p

q

åm
=
pm

qm
, (p, q) = 1

is also a rational number. To solve the problem we argue by
contradiction. Indeed, suppose that α17 and α19 are both rational.
Then, on account that the powers of rational numbers are also
rational, we have that

α17 α34 α51 α68 α85 α92 α119 α136 α153 · · ·
α19 α38 α57 α76 α95 α114 α133 α152 α171 α190 · · ·

are also rational. Therefore, taking into account that the quotient
of two rational numbers is also rational, we get that α153/α152 = α
is rational. Contradiction. Thus, if α is an irrational number, then
at least one of α17 and α19 is a rational number.

Also solved by Michel Bataille, Rouen, France; Rovsen Pirguliyev,
Sumgait, Azerbaijan, and Victoria Farina (student), SUNY Brock-
port, USA.

E–126. Proposed by Michel Bataille, Rouen, France. Let n be a
positive integer and a a non-negative real number. Prove that

(1 + a)n+1 ≥ 1 + (n+ 1)a
»

(1 + a)n.

Solution 1 by Titu Zvonaru, Comănesţi, Romania and the pro-
poser (same solution). Using AM-GM for the inequality, we have

(1 + a)n+1 − 1 = ((1 + a)− 1)
Ä
1 + (1 + a) + (1 + a)2 + · · ·+ (1 + a)n

ä

≥ a(n+ 1)
Ä
1 · (1 + a) · (1 + a)2 · · · (1 + a)n

ä1/(n+1)

= a(n+ 1)
Ä
(1 + a)n(n+1)/2

ä1/(n+1)

= a(n+ 1)(1 + a)n/2,
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that is, (1 + a)n+1 ≥ 1 + (n+ 1)a
»

(1 + a)n .

Notes:

• Equality holds if and only if a = 0.
• The inequality improves Bernoulli’s inequality (1 + a)n+1 ≥

1 + a(n+ 1).

Solution 2 by Victoria Farina (student), SUNY Brockport, USA.
We will prove the inequality by induction.

For n = 1 we get

(1 + a)2 ≥ 1 + 2a
»

(1 + a) ⇐⇒ 1 + 2a+ a2 ≥ 1 + 2a
»

(1 + a)

⇐⇒ 2a+ a2 ≥ 2a
√

1 + a ⇐⇒ 2 + a ≥ 2
√

1 + a

⇐⇒ 4 + 4a+ a2 ≥ 2 + 4a ⇐⇒ a2 ≥ 0

which is true.

We assume that

(1 + a)n+1 ≥ 1 + (n+ 1)a
»

(1 + a)n

and we want to prove that

(1 + a)n+2 ≥ 1 + (n+ 2)a
»

(1 + a)n+1

We start from

(1 + a)n+1 ≥ 1 + (n+ 1)a
»

(1 + a)n

and we multiply by (1 + a). We get

(1 + a)n+2 ≥ (1 + a)(1 + (n+ 1)a
»

(1 + a)n)

In order to finish the induction it suffices to prove that

(1 + a)(1 + (n+ 1)a
»

(1 + a)n) ≥ 1 + (n+ 2)a
»

(1 + a)n+1

⇐⇒ 1 + (n+ 1)a
»

(1 + a)n) + a+ (n+ 1)a2
»

(1 + a)n)
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≥ 1 + (n+ 2)a
»

(1 + a)n+1

⇐⇒ (n+ 1)a
»

(1 + a)n) + a+ (n+ 1)a2
»

(1 + a)n)

≥ (n+ 2)a
»

(1 + a)n+1

⇐⇒ (n+ 1)
»

(1 + a)n) + 1 + (n+ 1)a
»

(1 + a)n)

≥ (n+ 2)
»

(1 + a)n+1

⇐⇒ 1 + (n+ 1)(1 + a)
»

(1 + a)n)

≥ (n+ 2)
»

(1 + a)n+1

We will make the substitution t =
√

1 + a > 1. Thus

⇐⇒ 1 + (n+ 1)tn+2 − (n+ 2)tn+1 ≥ 0

⇐⇒ (n+ 1)tn+1(t− 1) + 1− tn+1 ≥ 0

⇐⇒ (n+ 1)tn+1(t− 1)− (t− 1)(tn + tn−1 + · · ·+ t+ 1) ≥ 0

⇐⇒ (t− 1)((n+ 1)tn+1 − tn − tn−1 − · · · − t− 1) ≥ 0

⇐⇒ (t−1)(tn+1− tn+ tn+1− tn−1 + · · ·+ tn+1− t+ tn+1−1) ≥ 0

⇐⇒ (t−1)(tn(t−1)+tn+1(t2−1)+· · ·+t(tn−1)+(tn+1−1)) ≥ 0

which is true because t > 1.

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.

E–127. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Points D,E, F lie on the sides BC,CA and AB of triangle ABC
respectively, such that BD = 3DC,CE = 3A and AF = 3FB .
Point P is the intersection point of BE and CF , Q is the intersec-
tion point of CF and AD and R is the intersection point of AD
and BE . Determine [PQR]/[ABC].

Solution 1 by Miquel Amengual Covas, Cala Figuera, Mallorca,
Spain. The answer is 4

13
.

More generally, we suppose

BD : DC = CE : EA = AF : FB = p : q
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and apply the Menelaus’s theorem to the two triads of points CRF ,
BQE on the sides of the two triangles ABD , ADC , obtaining

AF

FB
· BC
CD
· DR
RA

= 1,
AP

PD
· DB
BC
· CE
EA

= 1,

where AF
FB

= p
q

= CE
EA

, BC
CD

= p+q
q

, DB
BC

= p
p+q

.

Therefore,

DR

RA
=

q2

p(p+ q)
,

PD

AP
=

p2

q(p+ q)
. (1)

B C

A

D

E

F

P

Q

R

Adding 1 to each side of both equalities in (1), gives

AD

RA
=
p2 + pq + q2

p(p+ q)
,

AD

AP
=
p2 + pq + q2

q(p+ q)
,

and therefore

RA =
p(p+ q)

p2 + pq + q2
AD, AP =

q(p+ q)

p2 + pq + q2
AD.

Hence

PR = AR−AP =
p(p+ q)− q(p+ q)

p2 + pq + q2
AD =

p2 − q2
p2 + pq + q2

AD.
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Analogously,

RQ =
p2 − q2

p2 + pq + q2
CF, QP =

p2 − q2
p2 + pq + q2

BE.

Consequently, exists a triangle XY Z similar to 4PQR and whose
sides are equal and parallel to AD , BE , CF .

Since the ratio of the areas of two similar triangles is equal to the
square of the ratio of any pair of the corresponding sides of the
similar triangles, we have

[PQR] =
(p2 − q2)2

(p2 + pq + q2)2
[XY Z]. (2)

Let α, β , γ denote the lengths of cevians AD , BE , CF , respec-
tively.

By the Stewart’s theorem,

(p+ q)2α2 = (p+ q)pb2 + (p+ q)qc2 − pqa2

(p+ q)2β2 = (p+ q)pc2 + (p+ q)qa2 − pqb2

(p+ q)2γ2 = (p+ q)pa2 + (p+ q)qb2 − pqc2

We add these three equations. Next square these and add again.
We obtain

α2 + β2 + γ2 =
p2 + pq + q2

(p+ q)2
Ä
a2 + b2 + c2

ä
,

α4 + β4 + γ4 =
(p2 + pq + q2)

2

(p+ q)4
Ä
a4 + b4 + c4

ä
.

from which we deduce

α2β2 + β2γ2 + γ2α2 =
(p2 + pq + q2)

2

(p+ q)4
Ä
a2b2 + b2c2 + c2a2

ä
.
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By the Heron’s formula,

16[XY Z]2 = 2(α2β2 + β2γ2 + γ2α2)− (α4 + β4 + γ4)

=
(p2+pq+q2)

2

(p+q)4
(2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4))

=
(p2+pq+q2)

2

(p+q)4
· 16[ABC]2

and

[XY Z] =
p2 + pq + q2

(p+ q)2
[ABC]. (3)

By eliminating [XY Z] between (2) and (3), we obtain

[PQR]

[ABC]
=

(p− q)2
p2 + pq + q2

.

Substituting p = 3 and q = 1, we obtain [PQR]

[ABC]
= 4

13
, as claimed.

Solution 2 by Michel Bataille, Rouen, France. In barycentric
coordinates relatively to (A,B,C), we have

D = (0 : 1 : 3), E = (3 : 0 : 1), F = (1 : 3 : 0),

hence the respective equations of the lines AD,BE,CF are

3y − z = 0, x− 3z = 0, 3x− y = 0.

We deduce that P = (3 : 9 : 1), Q = (1 : 3 : 9), R = (9 : 1 : 3)
and therefore [PQR]/[ABC] = |δ| where

δ =
1

133

∣∣∣∣∣∣∣

3 1 9
9 3 1
1 9 3

∣∣∣∣∣∣∣
=

1

133

∣∣∣∣∣∣∣

0 1 0
0 3 −26
−26 9 −78

∣∣∣∣∣∣∣
=

262

133
=

4

13
.

Thus, [PQR]

[ABC]
=

4

13
.
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Solution 3 by Titu Zvonaru, Comănesţi, Romania. More gen-
erally, let x = BD

DC
, y = CE

EA
, z = AF

FB
. Then,

BD =
ax

x+ 1
, DC =

a

x+ 1
, CE =

by

y + 1
,

EA =
b

y + 1
, AF =

cz

z + 1
, FB =

c

z + 1
.

We have

[BFC]

[ABC]
=
BF

BA
=

1

z + 1
⇒ [BFC] =

[ABC]

z + 1
.

By Menelaus’ theorem in triangle AFC and transversal B−P −E ,
we obtain

BF

BA
·EA
EC
·PC
PF

= 1 ⇔ 1

z + 1
· 1
y
·PC
PF

= 1 ⇔ PC

PF
= y(z+1)

⇒ PC

CF
=

y(z + 1)

yz + y + 1
.

It results that
[BCP ]

[BCF ]
=
PC

CF
=

y(z + 1)

yz + y + 1

⇒ [BCP ] =
y(z + 1)

yz + y + 1
[BCF ], [BCF ] =

y

yz + y + 1
[ABC].

We obtain

[PQR] = [ABC]− [BCP ]− [ABR]− [CAQ]

= [ABC]

Ç
1− y

yz + y + 1
− z

zx+ z + 1
− x

xy + x+ 1

å

= [ABC] · (xyz − 1)2

(xy + x+ 1)(yz + y + 1)(zx+ z + 1)
.

For x = y = z = 3, we get

[PQR]

[ABC]
=

262

133
=

4

13
.
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Solution 4 by the proposer. We claim that if B is a point on line
PQ distinct from P and Q, and A is a point not lying on this line.
Then, it holds that

[PAB]

[QAB]
=
PB

QB
.

Indeed, let AH be the altitude drop from A on side PQ. Then, we
have

[PAB]

[QAB]
=

1
2
PB ·AH

1
2
QB ·AH =

PB

QB
.

QP HB

A

We also claim that if PAB and QAB are triangles such that the
lines AB and PQ meet at M . Then, it holds that

[PAB]

[QAB]
=
PM

QM
.

Indeed, we may assume that M is distinct from A,B, P , and Q
as otherwise it reduces to the previous special case. By the first
claim, we have

[PAB]

[QAB]
=

[PAB]

[PMB]
· [PMB]

[QMB]
· [QMB]

[QAB]
=
AB

MB
· PM
QM

·MB

AB
=
PM

QM
.



208 Arhimede Mathematical Journal

BA M

Q

P

M BA

Q

PP

Q

MBAA BM

Q

P

On account of the last claim, we have

[PBC]

[PAC]
=
BF

AF
=

1

3
and

[PBC]

[PBA]
=
CE

AE
= 3.

Hence,

F

E

D

R

QP
CB

A

Scheme for solving problem E127.

[ABC] = [PBC] + [PCA] + [PAB] =

Ç
1 + 3 +

1

3

å
[PBC],

and [PBC] =
3

13
[ABC]. Likewise, [QCA] = [RAB] =

3

13
[ABC].

Now, from [ABC] = [QCA] + [RAB] + [PBC] + [PQR] it follows

[PQR] =
4

13
[ABC], and

[PQR]

[ABC]
=

4

13
.
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E–128. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. In
how many different ways may you change an euro? That is, in
how many different ways can you pay 100 cents using six different
kinds of coins, 1, 2, 5, 10, 20 and 50 cents, respectively.

Solution 1 by Michel Bataille, Rouen, France. We show that
the required number N of all 6-uples of nonnegative integers
(x1, . . . , x6) satisfying

x1 + 2x2 + 5x3 + 10x4 + 20x5 + 50x6 = 100 (1)

is 4562.

We remark that (1) writes as (x1+2x2+5x3)+10(x4+2x5+5x6) =
100, so that 0 ≤ x4 + 2x5 + 5x6 ≤ 10, and we first consider the
equation x+ 2y + 5z = n. If N(n) is the number of its solutions
(x, y, z) in nonnegative integers, then

N =
10∑

k=0

N(k)N(100− 10k).

Now, there are
ö
n
2

ù
+ 1 solutions to x+ 2y = n (the solutions are

the pairs (n− 2a, a) for 0 ≤ a ≤ n
2

if n is even, 0 ≤ a ≤ n−1
2

if n
is odd), hence

N(n) =
bn/5c∑

k=0

Çú
n− 5k

2

ü
+ 1

å
.

Therefore, we have N(n) =
ö
n
2

ù
+ 1 if 0 ≤ n ≤ 4, N(n) =ö

n
2

ù
+
ö
n−5
2

ù
+ 2 if 5 ≤ n ≤ 9, that is, N(0) = N(1) = 1, N(2) =

N(3) = 2, N(4) = 3, N(5) = 4, N(6) = 5, N(7) = 6, N(8) =
7, N(9) = 8.
Since

N(10m) =
2m∑

k=0

Çú
10m− 5k

2

ü
+ 1

å
=

2m∑

j=0

Çú
5j

2

ü
+ 1

å

we have

N(10(m+ 1)) = N(10m) +

ú
5(2m+ 1)

2

ü
+

ú
5(2m+ 2)

2

ü
+ 2

= N(10m) + 5m+ 2 + 5m+ 5 + 2

= N(10m) + 10m+ 9.
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Since N(10) = 6+3+1 = 10, we then obtain N(20) = 29, N(30) =
58, N(40) = 97, N(50) = 146, N(60) = 205, N(70) = 274, N(80) =
353, N(90) = 442, N(100) = 541 and deduce that

N = 541 + 442 + 2 · 353 + 2 · 274 + 3 · 205 + 4 · 146 + 5 · 97 + 6 · 58

+ 7 · 29 + 8 · 10 + 10 = 4562.

Solution 2 by the proposers. Using generating functions, we
have to find the coefficient corresponding to x100 in

A(x) = (1 + x+ x2 + x3 + x4 . . .)

× (1 + x2 + x4 + x6 + x8 . . .)

× (1 + x5 + x10 + x15 + x20 . . .)

× (1 + x10 + x20 + x30 + x40 . . .)

× (1 + x20 + x40 + x60 + x80 . . .)

× (1 + x50 + x100 + x150 + x200 . . .)

=
1

(1− x)(1− x2)(1− x5)(1− x10)(1− x50)

=
∞∑

n=0

anx
n.

Since
1

(1− x)(1− x2)(1− x5)(1− x10)(1− x50)

= 1+x+2x2+2x3+3x4+4x5+. . .+4219x98+4366x99+4562x100+. . .

Then, [x100] = 4562, and we are done.

E–129. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let a, b, c be positive real numbers and let

x =

Ç
bc

a

ålg b
c

, y =
Åca
b

ãlg c
a

, z =

Ç
ab

c

ålg a
b

.

If x+ y + z and x3 + y3 + z3 are rational, then show that x2024 +
y2024 + z2024 is also rational.

Solution by the proposer. We argue as follows:
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• Calculate the product xyz

lg xyz = lg x+lg y+lg z = lg
b

c
· lg bc

a
+lg

c

a
· lg ca

b
+lg

a

b
· lg ab

c

= (lg b− lg c)(lg b+ lg c− lg a)

+(lg c−lg a)(lg c+lg a−lg b)+(lg a−lg b)(lg a+lg b−lg c) = 0

lg xyz = 0⇒ xyz = 1

• Use the identity

x3+y3+z3−3xyz︸ ︷︷ ︸
1

= (x+y+z)
î
x2 + y2 + z2 − (xy + xz + yz)

ó

where

®
x3 + y3 + z3 − 3 ∈ Q
x+ y + z ∈ Q∗ ⇒

x2+y2+z2−(xy+xz+yz) ∈ Q⇒ (x+y+z)2−3(xy+xz+yz) ∈ Q

⇒ xy + xz + yz ∈ Q

Note:





x+ y + z = p ∈ Q∗
xy + xz + yz = q ∈ Q
xyz = 1

⇒ x, y, z are the solutions of

the equation x3 − px2 + qx− 1 = 0

If Sk = xk + yk + zk ⇒ Sk+3 − pSp+2 + qSk+1 − Sk = 0

Inductively, Sn ∈ Q, ∀n ∈ N, so:

x2024 + y2024 + z2024 ∈ Q

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.

E–130. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Find

the largest positive integer k for which
1000!

10k
is an integer number

and determine the maximum power of 2 that divides it.
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Solution 1 by Michel Bataille, Rouen, France. Clearly, the max-
imum value of k is the exact number of zeros at the end of the
decimal expression of 1000!. Now, from a well-known result, the
exponent of 5 in the standard factorization of 1000! is

∞∑

j=1

ú
1000

5j

ü
= 200 + 40 + 8 + 1 = 249

and the exponent of 2 is

∞∑

j=1

ú
1000

2j

ü
= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 994.

We deduce that 1000! = 2994× 5249× ` where ` is coprime with 10.
We can conclude: max k = 249 and the the maximum power of 2
that divides 1000!

10249 is 2994−249 = 2745 .

Solution 2 by Titu Zvonaru, Comănesţi, Romania. We have
29 < 1000 < 210 and 54 < 1000 < 55 . We denote by [m] the largest
integer less than or equal to m. Since

ú
1000

2

ü
+

ú
1000

22

ü
+

ú
1000

23

ü
+

ú
1000

24

ü

+

ú
1000

25

ü
+

ú
1000

26

ü
+

ú
1000

27

ü
+

ú
1000

28

ü
+

ú
1000

29

ü

= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 994,

and
ú
1000

5

ü
+

ú
1000

52

ü
+

ú
1000

53

ü
+

ú
1000

54

ü
= 200 + 40 + 8 + 1 = 249.

It results that

n =
1000!

10k
=

2994 · 5249 ·m
2k · 5k ,

where m is not divisible by 2 or 5. It follows that the largest
positive integer k for which n is an integer is k = 249, and the
maximum power of 2 that divides n is 994− 249 = 745.
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Solution 3 by the proposers. The decimal representation of a
number n will end in a 0 if 10 | n. Furthermore, the number of 0’s
that trail the decimal representation of n is equal to the highest
power of 10 that divides n. But 10 can be factored as 2 · 5, so the
highest power of 10 that divides n is the minimum of the highest
power that 2 can divide n and the highest power of 5 that can
divide n.

By Legendre’s formulae, we see that 2α | 1000! where

α =
∞∑

i=1

ñ
1000

2i

ô
=

9∑

i=1

ñ
1000

2i

ô

=

ñ
1000

21

ô
+

ñ
1000

22

ô
+

ñ
1000

23

ô
+

ñ
1000

24

ô

+

ñ
1000

25

ô
+

ñ
1000

26

ô
+

ñ
1000

27

ô
+

ñ
1000

28

ô
+

ñ
1000

29

ô

= 500 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1

= 994

Likewise, we see that 5β | 1000! where

β =
∞∑

i=1

ñ
1000

5i

ô
=

4∑

i=1

ñ
1000

5i

ô

=

ñ
1000

51

ô
+

ñ
1000

52

ô
+

ñ
1000

53

ô
+

ñ
1000

54

ô

= 200 + 40 + 8 + 1

= 249

We see that min{994, 249} = 249, so 10249 | 1000!, and the maxi-
mum value of k satisfying the statement is 249.

Furthermore, the number
1000!

10249
= 2745pα2

2 p
α3
3 · · · is obviously

composite and 2745 is the maximum power 2 that divides it.

Also solved by Victoria Farina (studen)t, SUNY Brockport, USA.
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Easy–Medium Problems

EM–125. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let ABC be a triangle with AB < AC . Let M be the midpoint
of the side BC, I be its incenter, G be its centroid and D be
the foot of the altitude drawn from A. If MI ∩ AD = {X} and
3AX = AD , then show that IG ‖ BC .

Solution 1 by Miquel Amengual Covas, Cala Figuera, Mallorca,
Spain. Suppose 4ABC with inradius r , semiperimeter s and
sides a, b, c opposite A, B , C respectively.

We are told that b > c.

Let E be the foot of the perpendicular from I to BC . Then IE is
the inradius to the point of contact with BC and hence BE = s−b.

Let M be the midpoint of side BC and let h denote the length of
the altitude AD .

B M

I

D C

A

G

E

X

F

We have

EM = BM −BE =
a

2
− (s− b) =

b− c
2

.
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From the similarity of right-angled triangles XDM and IEM it
follows that

IE

EM
=
XD

DM
.

Therefore, since X trisects AD , we have

r
b−c
2

=
2h
3

DM

and

DM =
(b− c)h

3r
.

Since AM is the median to side BC , we have AM = 1
2

√
2b2 + 2c2 − a2 .

On the one hand, the area of 4ABC is 1
2
ah and also, according

to Heron’s formula,

1

4

»
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4.

Hence ah = 1
2

√
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4 and

h =

√
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

2a
.

By the Pythagorean theorem, applied to 4ADM ,

DM2 = AM2 −AD2,

which, on substitution, yields

(
(b−c)h

3r

)2
= 2b2+2c2−a2

4
− 2a2b2+2b2c2+2c2a2−a4−b4−c4

4a2

=
(b2−c2)2

4a2 .

This equality is now equivalent to

(b− c)2
Ñ
h2

9r2
− (b+ c)2

4a2

é
= 0,
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which we rewrite as

(b− c)2
Ç
h

3r
+
b+ c

2a

åÇ
h

3r
− b+ c

2a

å
= 0

Since b 6= c, it follows that h
3r
− b+c

2a
= 0, and therefore

ah

r
=

3(b+ c)

2
. (1)

On the other hand, the area of 4ABC may be expressed also as
rs; hence 1

2
ah = rs. We substitute 2rs for ah into (1), simplify,

and obtain
b+ c = 2a. (2)

By eliminating a between (1) and (2), we obtain

r =
h

3
.

That is,

IE =
AD

3
.

Let F the foot of the perpendicular from G to BC . Since 4ADM ∼
4GFM , the segment GF has the same ratio to AD as GM has
to AM . Since G trisects AM , we have GF = AD/3.

Thus, IE = GF .

Since G and I lie on the same half-plane with respect to the line
BC , we conclude that IG‖BC , as desired.

Solution 2 by Michel Bataille, Rouen, France. In barycentric
coordinates relatively to (A,B,C), we have G = (1 : 1 : 1) and
I = (a : b : c) where BC = a,CA = b,AB = c. The point at
infinity of the line BC (x = 0) is (0 : 1 : −1), hence the desired

conclusion IG ‖ BC is equivalent to

∣∣∣∣∣∣∣

a 1 0
b 1 1
c 1 −1

∣∣∣∣∣∣∣
= 0, that is, to

2a = b+ c (this is a well-known result).
Thus, the problem boils down to proving that b+ c = 2a.
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Let SA = b2+c2−a2

2
, SB = c2+a2−b2

2
, SC = a2+b2−c2

2
(Conway’s nota-

tion). Then D = (0 : SC : SB) and the equation of the line AD is
ySB−zSC = 0. The equation of MI is (b−c)x−ay+az = 0 (since
M = (0 : 1 : 1)) and we deduce that X = (a(b + c) : SC : SB). It
follows that

a(a+ b+ c)X = a(b+ c)A+ SCB + SBC = a(b+ c)A+ a2D.

The latter writes as (a+ b+ c)
−−→
AX = a

−−→
AD . Since 3AX = AD , we

must have 3a = a+ b+ c, hence 2a = b+ c, as desired.

Solution 3 by Titu Zvonaru, Comănesţi, Romania. Let AA′

be the bisector of the angle ∠BAC . Using usual notations and
formulas, we obtain

BD = c cosB =
a2 + c2 − b2

2a
,

DM = BM −BD =
a

2
− a2 + c2 − b2

2a
=
b2 − c2

2a
,

BA′ =
ac

b+ c
, A′M = BM −BA′ =

a

2
− ac

b+ c
=
a(b− c)
2(b+ c)

.

By Van Aubel’s theorem, we have

AI

IA′
=
b+ c

a
.

Since 3AX = AD implies XD
XA

= 2, applying Menelaus’ theorem
for the triangle ADA′ and the transversal M − I −X , it follows
that

MA′

MD
· XD
XA

· IA
IA′

= 1 ⇐⇒ a(b− c)
2(b+ c)

· 2a

b2 − c2 · 2 ·
b+ c

a
= 1

⇐⇒ b+ c = 2a ⇐⇒ AI

IA′
= 2 =

AG

GM
,

hence IG ‖ BC .

Also solved by the proposer.
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EM–126. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let n ≥ 1 be an integer. Find the first decimal figure of the real
number

√
n2 + 15n+ 55.

Solution 1 by Michel Bataille, Rouen, France. Answer: 4.

Let an = n2 + 15n+ 55. We want to show that

b10
√
anc − 10b√anc = 4.

Since

(n+ 7)2 = n2 + 14n+ 49 < an < n2 + 16n+ 64 = (n+ 8)2

we have b√anc = n+ 7.
Let θn =

√
an − b√anc. Since bk + xc = k + bxc if k ∈ Z, x ∈ R,

all boils down to showing that b10θnc = 4.
Now,

10θn = 10(
√
an − (7 + n)) = 10 · an − (7 + n)2

7 + n+
√
an

=
10n+ 60

7 + n+
√
an

and therefore

10n+ 60

2n+ 15
=

10n+ 60

7 + n+ 8 + n
< 10θn <

10n+ 60

7 + n+ 7 + n
=

10n+ 60

2n+ 14
.

Since

10n+ 60

2n+ 15
= 4 +

2n

2n+ 15
> 4 and

10n+ 60

2n+ 14
= 5− 10

2n+ 14
< 5

we see that 4 < 10θn < 5 and b10θnc = 4 follows.

Solution 2 by Rovsen Pirguliyev, Sumgait, Azerbaijan and Vic-
toria Farina (student), SUNY Brockport, USA. For all integer
n ≥ 1, we claim that

n+ 7.4 <
»
n2 + 15n+ 55 < n+ 7.5.

Indeed, (n+ 7.4)2 < n2 + 15n+ 55 < (n+ 7.5)2 ⇐⇒ n2 + 14.8n+
54.76 < n2 + 15n + 55 < n2 + 15n + 56.25 which is true. This
shows that the first decimal figure of the given number is 4.
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Solution 3 by the proposer. Note that (n+7)2 < n2+15n+55 <
(n+ 8)2 and therefore,

n+ 7 <
»
n2 + 15n+ 55 < n+ 8

from which it follows that b√n2 + 11n+ 30c = n + 7. Let α
be the first decimal figure of

√
n2 + 15n+ 55 − (n + 7). Then√

n2 + 11n+ 30− (n+ 5) = 0.αβγ . . . and

10
(»
n2 + 11n+ 30− (n+ 7)

)
= α.βγ . . .

This shows that α is the integer part of the number
x = 10

Ä√
n2 + 15n+ 55− (n+ 7)

ä
, and for all n ≥ 1, it holds:

α ≤ 10
(»
n2 + 15n+ 55− (n+ 7)

)
< α+ 1,

or equivalently

n+ 7 +
α

10
≤
»
n2 + 15n+ 55 < n+ 7 +

α+ 1

10
.

Squaring, we get

n2 + 2
Å
7 +

α

10

ã
n+

Å
7 +

α

10

ã2

≤ n2 + 15n+ 55 < n2 + 2

Ç
7 +

α+ 1

10

å
n+

Ç
7 +

α+ 1

10

å2

(1)

A necessary condition for the preceding to hold is that the next
relations between the coefficients of n in the three terms of the
relation (1) hold:

2
Å
7 +

α

10

ã
≤ 15 ≤ 2

Ç
7 +

α+ 1

10

å
,

otherwise the preceding relation (1) could not be fulfilled for any
given n.

The above relations lead to the double inequality α ≤ 5 ≤ α+ 1,
satisfied for α ∈ {4, 5}, but only α = 4 can be accepted because
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this value of α is sufficient as well for (1) to hold, since 55 <Ç
7 +

1

2

å2

. The value α = 5 fails to hold (1), since 55 <

Ç
7 +

1

2

å2

contradicting the LHS inequality of (1). Finally, we conclude that
the first decimal figure of

√
n2 + 11n+ 30 is α = 4 for all n ≥ 1.

Also solved by Titu Zvonaru, Comâneşti, Romania, and Albert
Stadler, Herrliberg, Switzerland.

EM–127. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a scalene triangle with incenter I and centroid G. Let Ga

be the orthogonal projection of G on BC . Let M be the midpoint
of BC and AM be the reflection of A in M . Denote with P the
second intersection point of the line AI and the circumcircle of the
triangle ABC . Knowing that the points AM , P,Ga are collinear,
find the ratio AI/IP .

Solution 1 by Michel Bataille, Rouen, France. Let BC = a,CA =
b,AB = c and let D be the foot of the altitude from A. In
barycentric coordinates relatively to (A,B,C), we have G =
(1 : 1 : 1), I = (a : b : c) and D = (0 : SC : Sb) where
SB = c2+a2−b2

2
, SC = a2+b2−c2

2
.

The line AI (cy − bz = 0) intersects the circumcircle of ABC
(a2yz + b2zx+ c2xy = 0) at A = (1 : 0 : 0) and

P = (a2 : −b(b+ c) : −c(b+ c)).

From
−−−→
MGa = 1

3

−−→
MD and 2M = B + C , we obtain 3a2Ga =

a2D+2a2M = (SC+a2)B+(SB+a2)C . Since AM = −A+B+C ,
the hypothesis about AM , P,Ga writes as

∣∣∣∣∣∣∣

−1 0 a2

1 SC + a2 −b(b+ c)
1 SB + a2 −c(b+ c)

∣∣∣∣∣∣∣
= 0,

that is, (b2−c2)[(b+c)2−5a2] = 0 after a simple calculation. Since
ABC is scalene, we have b2 6= c2 and therefore b+ c = a

√
5.

We deduce that P = (a : −b√5 : −c√5), hence

−4aP = aA− b
√

5B − c
√

5C = a(1 +
√

5)(A−
√

5I)
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so that (
√

5− 1)
−→
IP =

−→
AI . We conclude: AI

IP
=
√

5− 1.

Solution 2 by the proposer. The answer is

AI

IP
=
√

5− 1.

Let BC = a,CA = b,AB = c are the side lengths of the triangle
ABC . Let Ha, Ia are the orthogonal projections of A, I respectively
on the line BC .

Scheme for solving problem EM-127

Since AI is the angle bisector of ∠BAC , the point P is the mid-
point of the arc BC and P lies on the perpendicular bisector of
BC , so PM ⊥ BC , PM ‖ GGa . Hence 4AMGGa ∼ 4AMMP
and

PM

GGa

=
AMM

AMG
=

AM

AM +MG
=

3

4
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From 4MGGa ∼ 4MAHa hence

GGa

AHa

=
GaM

HaM
=
GM

AM
=

1

3
; GGa =

1

3
ha; PM =

1

4
ha,

where ha = AHa is the A-altitude of 4ABC .

Let U, V are the orthogonal projections of P on the lines AHa, IIa
respectively. Hence 4PAU ∼ 4PIV and

AI

IP
=
AP − IP

IP
=
AP

IP
− 1 =

AU

IV
− 1 =

AHa +HaU

IIa + IaV
− 1

=
AHa + PM

IIa + PM
− 1

since HaU = IaV = PM . Denote with r = IIa the radius of the
incircle of the triangle ABC . Let S be the area of the 4ABC .

S =
1

2
aha =

1

2
r(a+ b+ c);

ha

r
=
a+ b+ c

a

AI

IP
=
ha + 1

4
ha

r + 1
4
ha
− 1 =

5ha

4r + ha
− 1 =

5ha
r

4 + ha
r

− 1 =
5a+b+c

a

4 + a+b+c
a

− 1

=
4(b+ c)

5a+ b+ c

Denote with W = AI ∩ BC . Without loss of generality we may
assume that b > c, hence M is between C and the points
Ha, Ia, Ga,W .

BW

WC
=
c

b
; BW =

ac

b+ c

HaM = HaC −MC = b cosC − a

2
=
a2 + b2 − c2

2a
− a

2
=
b2 − c2

2a

WM = BM −BW =
a

2
− ac

b+ c
=
a(b+ c)− 2ac

2(b+ c)
=
a(b− c)
2(b+ c)
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The triangle 4WPM ∼ 4WAHa , so

HaW

WM
=
AHa

PM
= 4;

HaW

WM
=
HaM −WM

WM
=
HaM

WM
− 1

4 =
b2−c2
2a

a(b−c)
2(b+c)

− 1 ⇔ 5 =
2(b+ c)(b2 − c2)

2a2(b− c)

⇔ 0 =
(b+ c)2

a2
− 5 ⇔ 0 = (b+ c)2 − 5a2

⇔ 0 =
(
b+ c+

√
5a
)(
b+ c−

√
5a
)

but b+c+a
√

5 > 0 and so, the condition that the points AM , P,Ga

are collinear is
a
√

5 = b+ c.

Now

AI

IP
=

4(b+ c)

5a+ b+ c
=

4a
√

5

5a+ a
√

5
=

4√
5 + 1

=
√

5− 1

EM–128. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let u, v, z, w be complex numbers. Prove that

2Re
Å
uz + vw

ã
≤ 2

Å
|u|2 + |v|2

ã
+

1

2

Å
|z|2 + |w|2

ã
.

Solution 1 by José Gibergans-Báguena, BarcelonaTech, Terra-
ssa, Spain. Let a1, a2, b1, b2 and α be complex numbers. Then,
from

2∑

k=1

|ak − αbk|2 =
2∑

k=1

(ak − αbk)(ak − αbk)

=
2∑

k=1

|ak|2 + |α|2
2∑

k=1

|bk|2 − 2Re
(
α

2∑

k=1

akbk

)

≥ 0,

we get

Re
(
α

2∑

k=1

akbk

)
≤ 1

2

(
2∑

k=1

|ak|2 + |α|2
2∑

k=1

|bk|2
)

.
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Now setting a1 = u, a2 = v, b1 = z, b2 = w and α = 1/2 into the
preceding inequality, we have

1

2
Re
Å
uz + vw

ã
≤ 1

2

ïÅ
|u|2 + |v|2

ã
+

1

4

Å
|z|2 + |w|2

ãò
.

Multiplying by 4 both term of the preceding inequality the state-
ment immediately follows, and we are done.

Solution 2 by Michel Bataille, Rouen, France. For any complex
number Z , we have 2Re(Z) = Z + Z and |Z|2 = ZZ . We deduce
that

2(|u|2 + |v|2) +
1

2
(|z|2 + |w|2)− 2Re(uz + vw)

= (2uu+
1

2
zz − uz − uz) + (2vv +

1

2
ww − vw − vw)

=
1

2
((2u− z)(2u− z) + (2v − w)(2v − w))

=
1

2

Ä
|2u− z|2 + |2v − w|2

ä
,

hence 2(|u|2 + |v|2) + 1
2
(|z|2 + |w|2)− 2Re(uz + vw) ≥ 0 and the

result follows.

Solution 3 by Albert Stadler, Herrliberg, Switzerland. Let u =
a + ib, v = c + id, w = e + if, z = g + ih with a, b, c, d, e, f, g, h
real. Then

2
Ä
|u|2 + |v|2

ä
+

1

2

Ä
|z|2 + |w|2

ä
− 2Re(uz + vw)

= 2
Ä
a2 + b2 + c2 + d2

ä
+

1

2

Ä
e2 + f2 + g2 + h2

ä
−2(ag − bh+ ce− df)

= 2

(Å
a− g

2

ã2
+

Ç
b+

h

2

å2

+
Å
c− e

2

ã2
+

Ç
d+

f

2

å2)
≥ 0.

Solution 4 by Titu Zvonaru, Comâneşti, Romania. Let u =
u1 + iu2 , z = z1 + iz2 , with u1, u2, z1, z2 real numbers. We have

2<(uz) ≤ 2|u|2+1

2
|z|2 ⇐⇒ 4(u1z1−u2z2) ≤ 4(u2

1+u
2
2)+z

2
1+z22
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⇐⇒ (2u1 − z1)2 + (2u2 + z2)
2 ≥ 0.

It follows that

2<(uz) ≤ 2|u|2 +
1

2
|z|2,

and similarly,

2<(vw) ≤ 2|v|2 +
1

2
|w|2.

Adding these inequalities, we obtain the desired inequality.

Equality holds if and only if z1 = 2u1 , z2 = −2u2 , w1 = 2v1 , and
w2 = −2v2 .

Solution 5 by Victoria Farina (studen)t, SUNY Brockport, USA.
By AM - GM inequality

2(|u|2 + |v|2) +
1

2
(|z|2 + |w|2) ≥ 2

√

2(|u|2 + |v|2) · 1
2

(|z|2 + |w|2)

= 2
»

(|u|2 + |v|2) · (|z|2 + |w|2).

By Cauchy - Buniakovsky - Schwarz inequality

»
(|u|2 + |v|2) · (|z|2 + |w|2) ≥ |uz + vw|

≥ |Re(uz + vw)| ≥ Re(uz + vw).

Therefore

2(|u|2 + |v|2) +
1

2
(|z|2 + |w|2) ≥ 2Re(uz + vw).

Also solved by the proposer.
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EM–129. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
α ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. Prove that every positive real number
is the sum of nine numbers consisting only of 0 and α in their
digits and decimal part.

Solution by the proposers. First we claim that any positive num-
ber a may be represented as a sum of nine positive numbers, whose
decimal representation consists only of the digits 0 and 1. Indeed,
let

a = akak−1 · · · a0.a−1a−2 · · ·,
where ai (i = k, k − 1, · · · , 0,−1,−2, · · · ) are the consecutive
decimal digits of a. Consider the nine numbers

a(j) = a
(j)
k a

(j)
k−1 · · · a(j)

0 .a
(j)
−1a

(j)
−2 · · ·, 1 ≤ j ≤ 9,

where

a
(j)
i =

®
1, if j ≤ ai,
0, if j > ai.

Each digit of a(j) (j = 1, 2, . . . , 9) is either 0 or 1 and

a(1) + a(2) + . . .+ a(9) = a,

therefore the result claimed above is true.

For example, let a = 198726.67240351 and consider the numbers

a(1) = 111111.11110111,

a(2) = 011111.11110110,

a(3) = 011101.11010110,

a(4) = 011101.11010010,

a(5) = 011101.11000010,

a(6) = 011101.11000000,

a(7) = 011100.01000000,

a(8) = 011000.00000000,

a(9) = 010000.00000000,
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then a is sum of a(j) ’s.

Now let b be any positive number. Then a = b/α may be repre-
sented as a sum of nine numbers whose digits are 0’s and 1’s,
according to the claim. Let

a = a(1) + a(2) + . . .+ a(9)

be such a representation. Then each of the numbers αa(j) (j =
1, 2, . . . , 9) has a decimal representation consisting only of the
digits 0 and α. Therefore the representation

b =
Ä
αa(1)

ä
+
Ä
αa(2)

ä
+ . . .+

Ä
αa(9)

ä

has the desired properties.

EM–130. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Lisa and Bart play the following game. They first choose a positive
integer N , and then they take turns writing numbers on a black-
board. Lisa starts by writing 1. Thereafter, when one of them has
written the number n, the next player writes down either n+ 1 or
2n, provided the number is not greater than N . The player who
writes N on the blackboard wins.

(a) Determine which player has a winning strategy if N = 2025.
(b) Find the number of positive integers N ≤ 2025 for which Bart

has a winning strategy.

Solution by the proposer. (a) Lisa has a winning strategy for
odd N , and so wins when N = 2025. Observe that, whenever
a player writes down an odd number, the next is forced to
write down an even number. By adding 1 to that number, the
first player can write down another odd number. Since Lisa
starts the game by writing down an odd number, she can force
Bart to write down even numbers only. Since N is odd, Lisa
will win the game, and in particular, she wins for N = 2025.

(b) For even N we consider two cases, according to the value of
N (mod 4).
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• Let N = 4k. If any player is forced to write down a num-
ber m ∈ {k + 1, k + 2, . . . , 2k}, the other player wins by
writing down 2m ∈ {2k+2, 2k+4, . . . , 4k}, for the players
will then have to write down the remaining numbers one
after the other. Since there is an even number of num-
bers remaining, the latter player wins. This implies that
the player who can write down k (that is, has a winning
strategy for N = k), wins the game for N = 4k.

• Similarly, let N = 4k + 2. If any player is forced to write
down a number m ∈ {k + 1, k + 2, . . . , 2k + 1}, the other
player wins the game by writing down 2m ∈ {2k + 2, 2k +
4, . . . , 4k + 2}, as in the previous case. Analogously, this
implies that the player who has a winning strategy for
N = k wins the game for N = 4k + 2.

Since Lisa wins the game for N = 1, 3, while Bart wins the
game for N = 2, Bart wins the game for N = 8, 10 as well,
and thus for N = 32, 34, 40, 42 too. Then Bart wins the game
for a further 8 values of N between 128 and 170, and then
a further 16 values between 512 and 682, and for no other
values with N ≤ 2025. Hence Burt has a winning strategy for
precisely 31 values of N with N ≤ 2025.
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Medium–Hard Problems

MH–125. Proposed by Michel Bataille, Rouen, France. For a po-
sitive integer x, let v(x) denote the greatest of the integers r ≥ 0
such that 2r divides x and let m,n be positive integers. Prove that
v(2023m − 1) = v(2025n − 1) if and only if v(m) = v(n) 6= 0.

Solution by the proposer. Suppose that we have proved that
v(2025n−1) = v(n)+3 for all positive integer n and that v(2023m−
1) = 1 if v(m) = 0 while v(2023m − 1) = v(m) + 3 if v(m) ≥ 1.
Then, if v(m) = v(n) ≥ 1, we clearly have v(2023m − 1) =
v(2025n−1)(= v(m)+3 = v(n)+3). Conversely, if v(2023m−1) =
v(2025n − 1), then v(2023m − 1) must be greater than 1, hence
v(m) 6= 0 and v(2023m−1) = v(m)+3. Thus, v(n)+3 = v(m)+3
and v(n) = v(m) 6= 0 follows.

We now consider the above formulas about v(2025n − 1) and
v(2023m − 1).

Let a = 2024 = 8 × 253, so that v(a) = 3. Using the binomial
theorem, we immediately obtain v(2025n+1) = v((a+1)n+1) = 1
(for any n ≥ 1), v(2023m + 1) = v((a − 1)m + 1) = 1 for any
even m, v(2023m − 1) = v(a − 1)m − 1) = 1 for any odd m.
Also, if m,n are odd, then (a−1)m+1

a
and (a+1)n−1

a
are odd inte-

gers, hence v(2023m + 1) = v((a − 1)m + 1) = v(a) = 3 and
v(2025n − 1) = v((a+ 1)n − 1) = v(a) = 3.

To complete the calculation, we examine the case when m,n are
even. We use the following remark: if x and r are positive integers
and s is odd, then

xs·2
r − 1 = (xs − 1)(xs + 1) ·

r−1∏

k=1

(xs·2
k

+ 1).

Taking x = 2023 and m = s · 2r , we deduce that v(2023m − 1) =

1 + 3 +
r−1∑
k=1

1 = r + 3 = v(m) + 3 and taking x = 2025, n = s · 2r ,

v(2025n − 1) = 3 + 1 +
r−1∑
k=1

1 = 3 + r = 3 + v(n). This completes

the proof of the formulas assumed at the beginning.
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MH–126. Proposed by Jordi Ferré García, CFIS, BarcelonaTech,
Barcelona, Spain. (Correction) Let ABC be a triangle with AB <
AC , and H be its orthocenter. Let E and F be the intersection
of lines BH and CH with AC and AB respectively, and H ′ be
a point on line EF such that HH ′ ⊥ EF . If we let M be the
midpoint of side BC , and T be the intersection of line AM with
the circumcircle of ABC , show that lines MH ′ and TH intersect
on the circumcircle of triangle MEF .

Solution 1 by the proposer. During the following proof, for given
points A, B , C , we’ll denote (ABC) as the circumcircle of the
triangle with vertices A, B and C .

We start by letting S = MH ′ ∩ (MEF ), so now the problem
becomes equivalent to showing that points S , H and T lie on the
same line.

To start, define D = AH ∩ BC and G = EF ∩ BC . Now notice
that the quadrilateral GH ′HD is clearly cyclic, as

∠GH ′H = ∠HDG = 90◦.

We claim that S also lies in this circumference. To show this,
consider the inversion around the circumference centered at M
with radius MB = MF = ME = MC , which we’ll denote by
ϕ : R2 \ {M} → R2. Notice that, by definition, ϕ(F ) = F and
ϕ(E) = E , so we conclude that ϕ(EF ) = (MFE). This implies
that ϕ(D) = G and ϕ(H ′) = S , which means that MH ′ ·MS =
MD ·MG, which is equivalent to the desired cyclic, so our claim
is already proven.

Now, we consider ψ : R2 \ {H} → R2 as the inversion centered at
H with radius

√
HA ·HD , followed by a reflection across H . We

will show that this map sends S to T , which will clearly end the
problem. We will denote ψ(S) := S′ for now.

In order to do this first notice that S = (DEF ) ∩ (GDHH ′), so
S′ = ψ((DEF )) ∩ ψ((GDHH ′)). We first see that (DEF ) is sent
to (ABC), as ψ(D) = E , ψ(E) = B and ψ(F ) = C follows from
the fact that HD ·HA = HE ·HB = HF ·HC . So S lying over
(DEF ) implies that S′ ∈ (ABC).
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Now it suffices to show that (GDHH ′) is sent to line AM . See
how (GDHH ′) passes through H so its inverse is a line, and
ψ(D) = A implies that this line goes through A. Now, as GH is
a diameter of the circumference, we get that ψ(GH ′HD) is the
line through A perpendicular to GH . So it suffices to show that
AM ⊥ GH . But this is just a straight-forward implication of
Brokard’s Theorem applied to quadrilateral BFEC , as this tells us
that triangle GHA is autopolar with respect to this circumference,
and as M is its center, we obtain that GH ⊥ AM , which ends
the problem.

Solution 2 by Michel Bataille, Rouen, France. Let Γ be the
circumcircle of ABC , Γn its Euler circle (the circumcircle of MEF )
and γ be the circle with diameter BC (and center M ). Let D be
the foot of the altitude from A (see figure). The points B,C,E, F
are on γ and CE,BF intersect at A, EB,CF intersect at H
and EF,BC intersect at, say, S so that ∆ASH is self-polar with
respect to γ . It follows that the line AS intersects HM at, say, N
such that AN ⊥ HM . As a result, D,S,N,H ′ lie on the circle δ
with diameter HS .

Let δ and Γn intersect at D and U (U 6= D ). We answer the
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problem by showing that U is on the lines HT and MH ′ .

First, we consider the inversion I with center H such that I(E) =
B . Then I(γ) = γ and I(F ) = C . The circle with diameter AH ,
which passes through E and F inverts into the line BC , hence
I(A) = D . Since I(γ) = γ , the center M of γ inverts into the
foot of the polar of H with respect to γ , that is, I(M) = N . We
deduce that I(Γ) = Γn and I(AM) = δ . Thus, I(T ) = U and
H,U, T are collinear.

Second, we consider the inversion J in the circle γ . We have
J (E) = E,J (F ) = F and J (S) = D (since AH is the polar of S
and MS ⊥ AH ). It follows that J (δ) = δ. Since J (EF ) = Γn , we
see that J (H ′) is on δ and Γn , hence J (H ′) = U and H ′, U,M
are collinear. The proof is complete.

MH–127. Proposed by Ruben Mason Carpenter, Yale University,
New Haven, USA. Let p be a prime, and let a1, . . . , ap be positive
integers, none of them divisible by p. Prove that, for every integer
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n, there is a nonempty subset S ⊂ {1, 2, . . . , p} such that

n−
∑

s∈S
as

is divisible by p.

Solution by the proposer. For any set S , let Σ(S) denote the set
of (nonempty) possible sums of elements in S , modulo p:

Σ(S) =




∑

a∈A
xa (mod p) | ∅ 6= A ⊆ {1, 2, . . . , p}



.

The key idea is to keep track of the effect of adding each element,
one by one. This is made precise by the following claim.

Claim. For any 1 ≤ k ≤ p, we have |Σ({a1, . . . , ak})| ≥ k.

Proof. The proof is combinatorial: induct on k, with the base case
k = 1 trivial. Observe that the set Σ({a1, . . . , ak}) contains all the
elements of Sk−1 := Σ({a1, . . . , ak−1}) (by not including ak in the
set A), and contains a copy of each element in Sk , shifted by ak
(by including ak in the set A).

By induction hypothesis |Sk−1| ≥ k − 1. If it is at least k, then
we are done, so assume that |Sk−1| = |Sk| = k − 1. By the above
observation, this means that if s ∈ Sk−1 , then s + ak ∈ Sk−1 as
well. But ak is nonzero modulo p, so this means that

s, s+ ak, s+ 2ak, . . . , s+ (p− 1)ak ∈ Sk−1

cycles through all possible residues modulo p, so
Sk−1 = {0, 1, . . . , p− 1}. This is a contradiction, so the inductive
step is complete.

The problem now follows by setting k = p in the above.
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MH–128. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
a, b, c be positive real numbers such that the sum of their inverses
equals the inverse of their product. Find the maximum value of

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
.

Solution 1 by Rovsen Pirguliyev, Sumgait, Azerbaijan. Clear-
ing denominators in the given condition a−1 + b−1 + c−1 = abc−1

we get ab+ bc+ ca = 1. On account of AM-GM inequality, we have

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤
a · b+ c

2
+ b · c+ a

2
+ c · a+ bc

2
a4 + b4 + c4

=
ab+ bc+ ca

a4 + b4 + c4
=

1

a4 + b4 + c4
.

On the other hand,

a2+b4+c4 ≥ 3

(
a2 + b2 + c2

3

)2

≥ 3

Ç
ab+ bc+ ca

3

å2

= 3

Ç
1

3

å2

=
1

3
.

In the above we have used the inequality a2+b2+c2 ≥ ab+bc+ca.
Combining the previous results, we obtain

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 1

a4 + b4 + c4
≤ 3.

The maximum is 3 which is attained when a = b = c = 1/
√

3.

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
Purchase, NY, USA. We use the following well-known results:
(1) The Cauchy-Schwarz inequality; (2) [(a4 + b4 + c4)/3]

1/4 ≥
[(a2 + b2 + c2)/3]

1/2 ≥ (a + b + c)/3; (3) Maclaurin’s inequality:
(a+ b+ c)/3 ≥ [(ab+ bc+ ca)/3]1/2 .

First we note that 1/a+1/b+1/c = 1/abc, or (ab+bc+ca)/abc =
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1/abc, implies ab+ bc+ ca = 1. Now we see that

∑

cyclic

a
√
bc

a4 + b4 + c4

(1)

≤
√
a2 + b2 + c2 · √ab+ bc+ ca

a4 + b4 + c4
=

√
a2 + b2 + c2

a4 + b4 + c4

(2)

≤ 3 ·
√
a2 + b2 + c2

a2 + b2 + c2
=

3√
a2 + b2 + c2

(2), (3)

≤ 3

1
= 3.

Equality holds if and only if a = b = c = 1/
√

3.

Solution 3 by Michel Bataille, Rouen, France. The condition
on a, b, c, that is, 1

a
+ 1

b
+ 1

c
= 1

abc
, is equivalent to ab+ bc+ ca = 1.

Let X = a
√
bc+b

√
ca+c

√
ab

a4+b4+c4
. We show that the maximum value of X

under this constraint is 3.

If a = b = c = 1√
3
, then a, b, c satisfy ab+ bc+ ca = 1 and X = 3.

To complete the proof, it remains to prove that X ≤ 3 whenever
ab+ bc+ ca = 1.

Suppose that a, b, c satisfy the constraint and let s = a+b+c, p =
abc. From the general inequality x2 + y2 + z2 ≥ xy + yz + zx, we
successively obtain

a
√
bc+b

√
ca+c

√
ab =

√
ab
√
ca+
√
ca
√
ab+
√
ab
√
bc ≤ ab+bc+ca = 1

a2b2 + b2c2 + c2a2 ≥ ab2c+ bc2a+ cab2 = sp

and

a4+b4+c4 ≥ a2b2+b2c2+c2a2 = (ab+bc+ca)2−2abc(a+b+c) = 1−2sp.

Note that 1− 2sp ≥ sp so that 3sp ≤ 1 and therefore

a4 + b4 + c4 ≥ 1− 2sp ≥ 1− 2

3
=

1

3
.

We are done since we deduce that

X ≤ 1

1− 2sp
≤ 1

1/3
= 3.
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Solution 4 by Albert Stadler, Herrliberg, Switzerland. The cons-
traint on a, b, c is equivalent to ab+ bc+ ca = 1. By the Cauchy-
Schwarz inequality,

a
√
bc+ b

√
ca+ c

√
ab ≤

»
a2 + b2 + c2

√
ab+ bc+ ca

and

ab+ bc+ ca ≤ a2 + b2 + c2.

Hence

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
=

(
a
√
bc+ b

√
ca+ c

√
ab
)
(ab+ bc+ ca )

a4 + b4 + c4

≤
√
a2 + b2 + c2(ab+ bc+ ca )

3
2

a4 + b4 + c4
≤ (a2 + b2 + c2)

2

a4 + b4 + c4
≤ 3

as the last inequality is equivalent to

2
Ä
a4 + b4 + c4

ä
≥ 2

Ä
a2b2 + b2c2 + c2a2

ä

which holds true by the Cauchy-Schwarz inequality. We have
equality if and only if a = b = c. So the maximum value equals 3,
and is assumed when a = b = c =

√
3/3.

Solution 5 by the proposers. Let f(a, b, c) =
a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
.

Since f(
√

3/3,
√

3/3,
√

3/3) = 3 and f(1/2, 1/3, 1) =
216

1393
(
√

2 +
√

3+
√

6) = 0.867, we conjecture that if a−1 +b−1 +c−1 = (abc)−1 ,
then

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 3.

Indeed, taking into account the well-known inequality a2+b2+c2 ≥
ab+ bc+ ca, we get (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) ≥
3(ab+ bc+ ca). On the other hand, using AM-GM inequality two
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times, we have

(a+ b+ c)2 = (a2 + b2 + c2 + ab+ bc+ ca) +
1

2
(2ab+ 2bc+ 2ca)

= (a2 + bc) + (b2 + ca) + (c2 + ab)

+
1

2
[(ab+ ca) + (bc+ ab) + (ca+ bc)]

≥ 2a
√
bc+ 2b

√
ca+ 2c

√
ab

+
1

2

Å
2a
√
bc+ 2b

√
ca+ 2c

√
ab
ã

= 3
Å
a
√
bc+ b

√
ca+ c

√
ab
ã
.

Multiplying up the preceding inequalities and taking into account
the constrain, that can be written as ab+ bc+ ca = 1, yields

(a+b+c)4 ≥ 9(ab+bc+ca)
Å
a
√
bc+b

√
ca+c

√
ab
ã

= 9
Å
a
√
bc+b

√
ca+c

√
ab
ã

or equivalently,

9

Ç
a+ b+ c

3

å4

≥
Å
a
√
bc+ b

√
ca+ c

√
ab
ã
.

Since
a+ b+ c

3
≤ 4

√
a4 + b4 + c4

3
, on account of mean inequalities,

then

a
√
bc+ b

√
ca+ c

√
ab ≤ 9

Ç
a+ b+ c

3

å4

≤ 3 (a4 + b4 + c4)

from which the claim follows. Equality holds when a = b = c =√
3/3, and we are done.

Also solved by Titu Zvonaru, Comâneşti, Romania

MH–129. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let 1 =
d1 < d2 < · · · < dk = n be all divisors of a positive integer n. Find
all n, such that k ≥ 6 and

d6
2 + 2024

5d4

= n.
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Solution 1 by the proposer. Since n = d6dk−5 ,

d6
2 + 2024 = 5d4n = 5d4d6dk−5

and d6 | 2024 = 23 · 11 · 23.

From 5 | d6
2 + 2024 hence 0 ≡ d6

2 + 2024 ≡ d6
2 − 1 (mod 5), or

d6 ≡ ±1 (mod 5).

Since d4 ≥ d2 + 2 ≥ 4 and d6 ≥ d4 + 2 ≥ 6, we have the following
cases:

(1) d6 = 11

n =
d6

2 + 2024

5d4

=
2145

5d4

=
429

d4

d4 | 429 = 3 · 11 · 13, and d4 < d6 = 11, hence d4 = 3 < 4, a
contradiction.

(2) d6 = 44

n =
d6

2 + 2024

5d4

=
3960

5d4

=
792

d4

d4 | 792 = 23 · 32 · 11, and so d2 = 2, d3 = 3, n ≥ 44, hence
d4 ≤ 18 and d4 ∈ {4, 6, 8, 9, 12, 18}. Since d4 is either a prime
or a product of two primes, d4 is impossible to be one of 8 = 23 ,
12 = 22 · 3, 18 = 2 · 32 .

d4 n

4 198 4 - n
6 132 d6 = 11 6= 44

9 88 9 - n

and no solution in this case.

(3) d6 = 46, hence d2 = 2, d5 ≤ 23,

n =
d6

2 + 2024

5d4

=
4140

5d4

=
828

d4

d4 | 828 = 22 · 32 · 23, and so d2 = 2, d3 = 3. n ≥ 46, hence
d4 ≤ 18 and the possible values for d4 are 6, 9, 12. Since d4 is
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either a prime or a product of two primes, d4 is impossible to be
12 = 22 · 3.

If d4 = 6, then n = 138 and this is a solution.

If d4 = 9, then n = 92 but 9 - n, a contradiction.

(4) d6 = 184 = 23 · 23, hence d2 = 2, d3 ≤ 4, d4 ≤ 8, d5 ≤ 23, d6 ≤
46, but this is impossible since d6 = 184.

(5) d6 = 506 = 2 · 11 · 23, hence d2 = 2, d3 ≤ 11, d4 ≤ 22, d5 ≤
23, d6 ≤ 46, but this is impossible since d6 = 506.

(6) d6 = 2024 = 23 · 11 · 23, hence d2 = 2, d3 ≤ 4, d4 ≤ 8, d5 ≤
11, d6 ≤ 22, but this is impossible since d6 = 2024.

In summary, the only solution is n = 138.

Solution 2 by Albert Stadler, Herrliberg, Switzerland. We note
that

d6

Ç
5
n

d6

d4 − d6

å
= 2024.

So d6 is a divisor of 2024 and therefore d6∈{1, 2, 4, 8, 11, 22, 23,
44, 46, 88, 92, 184, 253, 506, 1012, 2024}. Clearly, d4≥4, d6≥6.

d2
6 + 2024 is divisible by 5 which implies that either d6≡(1 mod 5)

or d6≡(4 mod 5). This reduces the set of feasible values of d6 to
{11, 44, 46, 184, 506, 2024}. We are left with the following cases:

1. d6=11: nd4 = 429 = 3 · 11 · 13
2. d6=44: nd4 = 792 = 23 · 32 · 11
3. d6=46: nd4 = 828 = 22 · 32 · 23
4. d6=184: nd4 = 7176 = 23 · 3 · 13 · 23
5. d6=506: nd4 = 51612 = 22 · 3 · 11 · 17 · 23
6. d6=2024: nd4 = 819720 = 23 · 34 · 5 · 11 · 23

We have nd4 = (d4)
2 n
d4
. It follows that nd4 is not square free and

so case 1 is not feasible. n is divisible by 2 and 3, since d4n is
and d4 is a divisor of n. So d1=1, d2=2, d3=3. We have d4=4 or
d4=5 or d4=6. d4=4 is absurd, since d4n is not divisible by 16. In
particular, n is not divisible by 4. d4=5 is absurd, since d4n is not
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divisible by 25. So d4=6, d4n is divisible by 36, and n=6m and m
is odd. So cases 2, 4, 5, 6 are not feasible. We are left with case
3, and the only feasible n is n = 138. For n = 138 we have d1=1,
d2=2, d3=3, d4=6, d5=23, d6=46, d7=69, d8=138 and d26+2024

5d4
= n.

Solution 3 by Titu Zvonaru, Comănesţi, Romania. We have
d4 ≥ 4, d6 ≥ 6. Since n is divisible by d6 , by the relation

d2
6 + 2024 = 5d4n (1)

we deduce that d6 is a divisor of 2024 = 23 · 11 · 23. Since any
divisor of d6 is a divisor of n, it follows that d6 has at most 5
divisors. This gives the possibilities for d6 :

d6 = 8, 11, 23, 2 · 11, 2 · 23, 11 · 23.

The left side of equation (1) is divisible by 5; hence, the possible
values for d6 are 11 and 2 · 23.

Let n = d6a. For d6 = 11, we obtain

121 + 2024 = 5d4n ⇔ 429 = d4d6a ⇔ 39 = d4a,

which gives d4 = 13 or d4 = 39, a contradiction with d6 = 11.

For d6 = 2 · 23, we obtain

2116 + 2024 = 5d4n ⇔ 828 = d4d6a ⇔ 18 = d4a,

which gives the pairs (d4, a) = (6, 3), (9, 2), (18, 1). If d4 = 9,
a = 2 or d4 = 18, a = 1, it follows that n is not divisible by 3,
which is a contradiction.

Thus, we conclude that n = 2 · 3 · 23 = 138, with divisors

d1 = 1, d2 = 2, d3 = 3, d4 = 6, d5 = 23, d6 = 46, d7 = 69, d8 = 138.

Also solved by José Luis Díaz Barrero, Barcelona, Spain.
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MH–130. Proposed by Ander Lamaison Vidarte, Brno, Czech Re-
public. An increasing sequence of positive integers a1 < a2 <
· · · < an is requenense if for every 2 ≤ k ≤ n − 1 we have that
ak−1ak+1 divides a4

k .

• Prove that there exists a requenense sequence of length 106 +1
with a106 = 62024 .

• Prove that there does not exist a requenense sequence of length
108 + 1 with a108 = 62024 .

Solution by the proposer. We start by noticing that, in both
cases, every term ak in the sequence must be of the form 2b3c .
Indeed, this is true for k = 106 or k = 108 . On the other hand, by
the requenense condition, if it holds for some k which is neither
the first or the last then ak−1ak+1 divides a4

k , implying that both
ak−1 and ak+1 are of the form 2b3c .

For the first part, we look at the numbers of the form 2b3c with
1025 ≤ b, c ≤ 2024. There are 106 numbers of this form, and the
largest is 62024 . If we take any three of them, say 2b13c1 , 2b23c2

and 2b33c3 , then b1 + b2 ≤ 2 · 2024 < 4 · 1025 ≤ 4b3 , and similarly
c1 + c2 ≤ 4c3 . Thus if we take a1 < a2 < · · · < a106 to be these 106

numbers in increasing order, the sequence will be requenense. In
order to reach length 106 + 1 we just need to choose a106+1 > 62024

such that
62024

2
a106+1 = a106−1a106+1

divides 64·2024 . We can choose for example a106+1 = 2 · 62024 .

For the second part, we just need to show that there are fewer
than 108 numbers of the form 2b3c less than or equal to 62024 . If
2b3c ≤ 62024 , then 2b ≤ 62024 < 82024 = 23·2024 and 3c ≤ 62024 <
92024 = 32·2024 , so b < 3 · 2024 and c < 2 · 2024. The number of
possible pairs (b, c) is at most 6 ·20242 < 10 ·30002 = 9 ·107 < 108 .

Also solved by José Luis Díaz Barrero, Barcelona, Spain.
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Advanced Problems

A–125. Proposed by José Luis Díaz Barrero, Barcelona, Spain.
Compute

lim
n→∞

1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
.

Solution 1 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University Newport News, VA, USA. Let

Pn =
1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
=

n∏

k=1

Ñ√
n+ (1 + 1

n
)
√
k

√
n+
√
k

é

=
n∏

k=1

Ñ
1 +

√
k

n(
√
n+
√
k)

é
=

n∏

k=1

Ö

1 +

√
k
n

n
(
1 +

√
k
n

)

è

.

Then

lnPn =
n∑

k=1

ln

Ö

1 +

√
k
n

n
(
1 +

√
k
n

)

è

=
n∑

k=1

√
k
n

n
(
1 +

√
k
n

) +
∞∑

j=2

(−1)j−1
1

j

n∑

k=1

Ö √
k
n

n
(
1 +

√
k
n

)

èj

.

As n→∞,

n∑

k=1

√
k
n

n
(
1 +

√
k
n

) →
∫ 1

0

√
x

1 +
√
x
dx = 2

∫ 1

0

u2

1 + u
du

= 2
∫ 1

0

Ç
u− 1 +

1

1 + u

å
du = 2

Ç
1

2
u2 − u+ ln(1 + u)

å∣∣∣∣∣∣

1

0

= −1 + ln 4.

Now, for j ≥ 2,

n∑

k=1

Ö √
k
n

n
(
1 +

√
k
n

)

èj

→ 1

nj−1

∫ 1

0

( √
x

1 +
√
x

)j
dx→ 0
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as n→∞. Thus,

lim
n→∞ lnPn = −1 + ln 4,

and

lim
n→∞Pn = exp(−1 + ln 4) =

4

e
.

Solution 2 by Michel Bataille, Rouen, France. We claim that
the limit is 4

e
.

We have n
√
n+(n+1)

√
k√

n+
√
k

= n

Ç
1 + 1

n
·
√
k/n

1+
√
k/n

å
, hence the problem

reduces to finding the limit of

Pn =
n∏

k=1

Ñ
1 +

1

n
·
»
k/n

1 +
»
k/n

é
.

We know that x− x2

2
≤ ln(1 + x) ≤ x for x > 0 and we deduce

1

n

n∑

k=1

»
k/n

1 +
»
k/n
− 1

2n2

n∑

k=1

Ñ »
k/n

1 +
»
k/n

é2

≤ ln(Pn) ≤ 1

n

n∑

k=1

»
k/n

1 +
»
k/n

.

Now, we have

lim
n→∞

1

n

n∑

k=1

»
k/n

1 +
»
k/n

=
∫ 1

0

√
x

1 +
√
x
dx

= 2
∫ 1

0

u2

1 + u
du = 2

∫ 1

0

Ç
u− 1 +

1

1 + u

å
du

= 2

Ç
−1

2
+ ln 2

å
= ln(4/e).

Also, since k/n

(1+
√
k/n)2

≤ 1, we have
n∑
k=1

Ç √
k/n

1+
√
k/n

å2

≤ n and there-

fore

0 ≤ 1

2n2

n∑

k=1

Ñ »
k/n

1 +
»
k/n

é2

≤ 1

2n
.
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By the Squeeze Principle, we first deduce that

lim
n→∞

1

2n2

n∑

k=1

Ñ »
k/n

1 +
»
k/n

é2

= 0

and then that
lim
n→∞ ln(Pn) = ln(4/e).

The claim follows.

Solution 3 by Albert Stadler, Herrliberg, Switzerland. We have

1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
=

n∏

k=1

Ö
1 +

Ä
1 + 1

n

ä√
k
n

1 +
√
k
n

è

=
n∏

k=1

Ö

1 +

√
k
n

n
(
1 +

√
k
n

)

è

= exp

Ö
n∑

k=1

ln

Ö

1 +

√
k
n

n
(
1 +

√
k
n

)

è è

= exp

Ö
n∑

k=1

√
k
n

n
(
1 +

√
k
n

) +
n∑

k=1

O

Ç
1

n2

åè

.

We note that
∑n
k=1

√
k
n

n
Ä
1+
√

k
n

ä is a Riemann sum that tends to

∫ 1

0

√
x

1 +
√
x
dx =

∫ 1

0

2y2

1 + y
dy = 2

∫ 1

0

Ç
y − 1 +

1

1 + y

å
dy = −1+2ln2 .

So

lim
n→∞

1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
=

4

e
.

Solution 4 by the proposer. We begin with a lemma.

Lemma 1. Let f : [0, 1] → (0,+∞) be an integrable function.
Then,

lim
n→∞

n∏

k=1

ñ
1 +

1

n
f

Ç
k

n

åô
= e

∫ 1

0
f(x) dx.
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Proof. Since f is integrable, then f is bounded. That is, there
exists M ≥ 0 such that |f(x)| ≤M for all x ∈ [0, 1]. Now, calling

L = lim
n→∞

n∏

k=1

ñ
1 +

1

n
f

Ç
k

n

åô
, we have lnL =

n∑

k=1

ln

ñ
1 +

1

n
f

Ç
k

n

åô
.

Putting x =
1

n
f

Ç
k

n

å
, 1 ≤ k ≤ n into the well-known inequality

x− x2

2
≤ ln(1 + x) ≤ x, ∀x ∈ [0, 1]

and adding the resulting inequalities, yields

n∑

k=1

1

n
f

Ç
k

n

å
−

n∑

k=1

1

2n2
f2

Ç
k

n

å
≤

n∑

k=1

ln

ñ
1 +

1

n
f

Ç
k

n

åô
≤

n∑

k=1

1

n
f

Ç
k

n

å
.

Taking limits when n→∞, we get
∫ 1

0
f(x) dx− lim

n→∞

n∑

k=1

1

2n2
f2

Ç
k

n

å
≤ lim

n→∞

n∑

k=1

ln

ñ
1 +

1

n
f

Ç
k

n

åô
≤
∫ 1

0
f(x) dx.

Since 0 ≤
n∑

k=1

1

2n2
f2

Ç
k

n

å
≤ M2

2n
, then when n→∞ is

0 ≤ lim
n→∞

n∑

k=1

1

2n2
f2

Ç
k

n

å
≤ lim

n→∞
M2

2n
= 0

and

lim
n→∞

n∑

k=1

ln

ñ
1 +

1

n
f

Ç
k

n

åô
=
∫ 1

0
f(x) dx

from which the statement follows and the proof is complete.

Applying the Lemma to the function f(x) =

√
x

1 +
√
x

, we have

lim
n→∞

1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
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1

nn
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k=1

Ñ
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√
k

√
n+
√
k

é

= lim
n→∞

n∏

k=1

Ñ
1 +

1

n

√
k

√
n+
√
k

é
= lim

n→∞

n∏

k=1

ñ
1 +

1

n
f

Ç
k

n

åô
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= exp

(∫ 1

0

√
x

1 +
√
x
dx

)
= exp

Çï
x− 2

√
x+ 2 ln(1 +

√
x)
ò1
0

å

= e2 ln 2−1 = ln
4

e
≈ 1.4715.

Solution 5 by Moti Levy, Rehovot, Israel. Let

L :=
1

nn

n∏

k=1

Ñ
n
√
n+ (n+ 1)

√
k

√
n+
√
k

é
=

n∏

k=1

Ö
1 +

√
k
n

+ 1
n

√
k
n

1 +
√
k
n

è

, (1)

ln(L) =
n∑

k=1

Ñ
ln

Ñ
1 +

√
k

n
+

1

n

√
k

n

é
− ln

Ñ
1 +

√
k

n

éé
. (2)

By Taylor’s theorem,

ln(1 + y + h) = ln(1 + y)+h
1

1 + y
−h

2

2

1

(1 + η)2
, 1+y ≤ η ≤ 1+y+h.

(3)
Setting y =

√
k
n

and h = 1
n

√
k
n

in (3),

ln

Ñ
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√
k

n
+

1

n

√
k

n

é
= ln

Ñ
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√
k

n

é
+

1

n

√
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n

1

1 +
√
k
n

−
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1

n

√
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n

é2
1

(1 + η)2
,

1 +

√
k

n
≤ η ≤ 1 +

√
k

n
+

1

n

√
k

n
. (4)

ln
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√
k

n
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1

n

√
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n

é
− ln
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√
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n

é
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1
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ln(L) =
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√
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√
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é
− ln
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éé

=
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n
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√
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+
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lim
n→∞ ln(L) = lim

n→∞

Ö
1

n

n∑

k=1

(√
k
n
− 1

)√
k
n

k
n
− 1

+ O

Ç
1

n

åè

=
∫ 1

0

Ä√
x− 1

ä√
x

x− 1
dx

= −1 + 2 ln(2).

lim
n→∞L = e−1+2 ln(2) =

4

e
∼= 1.4715.

Also solved by Shivam Sharma, Delhi University, New Delhi, India.

A–126. Proposed by Miguel Amengual Covas, Cala Figuera, Ma-
llorca, Spain. Consider in R3 a sphere and one of its equatorial
planes. Find the geometric locus of the vertices of the cones
circumscribed to the sphere and whose trace on the equatorial
plane is a parabola.

Solution 1 by Michel Bataille, Rouen, France. Let S and P be
the given sphere and equatorial plane, respectively. Without loss of
generality, we suppose that their equations are x2 + y2 + z2 = R2

(with R > 0) and z = 0, respectively. We consider a cone C with
vertex Ω(a, b, c) circumscribed to S . Note that Ω is exterior to S
so we must have a2 + b2 + c2 > R2 . The equation of C is

[a(x−a) + b(y− b) + c(z− c)]2 = m[(x−a)2 + (y− b)2 + (z− c)2].

where m = a2 + b2 + c2 −R2 .
(This equation is obtained by writing that M(x, y, z) with M 6= Ω
is on C if and only if the line of points

(a+ t(x− a), b+ t(y − b), c+ t(z − c)) (t ∈ R)

is tangent to S , that is, if and only if the quadratic equation

t2[(x−a)2+(y−b)2+(z−c)2]+2t[a(x−a)+b(y−b)+c(z−c)]+m = 0

has a double solution for t.)
Now, a point Ω, exterior to S , is a point of the required locus if
and only if Ω /∈ P and P is parallel to a generatrix of C . Since
the generatrix through M(x, y, z) ∈ C is directed by the vector
(x− a, y − b, z − c) this is achieved if and only if z = c 6= 0. Thus,
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Ω is suitable if and only if c 6= 0 and for some x, y such that
(x− a, y − b) 6= (0, 0) we have

[a(x− a) + b(y − b)]2 = m[(x− a)2 + (y − b)2]

or

(b2+c2−R2)(x−a)2−2ab(x−a)(y−b)+(a2+c2−R2)(y−b)2 = 0.

But if α, β, γ ∈ R, then αX2 + 2βXY + γY 2 = 0 for some real
pair (X,Y ) 6= (0, 0) if and only if β2 ≥ αγ . Thus, the conditions
for Ω to belong to the locus are a2 + b2 + c2 > R2, c 6= 0 and
a2b2 ≥ (b2 + c2 − R2)(a2 + c2 − R2). The latter rewriting as
(c2 − R2)(a2 + b2 + c2 − R2) ≤ 0, we finally get the conditions
a2 + b2 + c2 > R2, c 6= 0,−R ≤ c ≤ R and we conclude that the
required locus is the set of points exterior to S , lying on one of the
planes strictly parallel to P , between (and including) those tangent
to S .

Solution 2 by the proposer. We consider a rectangular coordi-
nate system with the unit of measurement the same along the
three axes.

Let r denote the radius of the given sphere, place its centre at
(0, 0, 0) and the simpler equation

x2 + y2 + z2 = r2 (1)

now represents the sphere with radius r .

Le us choose the xy-plane as the considered equatorial plane.

Let P (x◦, y◦, z◦) be a point of the required locus. The circum-
scribed cone with vertex at P is the locus of the straight lines

` :





x = x◦ + λm
y = y◦ + λn
z = z◦ + λp

(2)

which cut the sphere in coincident points.
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Without lost of generality, we suppose −→v = (m,n, p) to be a unit
vector, i.e.,

m2 + n2 + p2 = 1. (3)

Solving (1) and (2) simultaneously gives

(x◦ + λm)2 + (y◦ + λn)2 + (z◦ + λp)2 = r2.

Expanding and collecting terms,
Ä
m2 + n2 + p2

ä
λ2 + 2(mx◦ + ny◦ + pz◦)λ+ x2

◦ + y2
◦ + z2◦ − r2 = 0

Substituting from (3) for m2 + n2 + p2 , we obtain

λ2 + 2(mx◦ + ny◦ + pz◦)λ+ x2
◦ + y2

◦ + z2◦ − r2 = 0. (4)

Since the lines ` above are tangents to the sphere, the roots of
(3) must be equal, that is, the discriminant must be equal to zero.
Hence,

(mx◦ + ny◦ + pz◦)
2 − x2

◦ − y2
◦ − z2◦ + r2 = 0. (5)

In (3) we substitute x−x◦
λ

, y−y◦
λ

, z−z◦
λ

for m, n, p from (2), obtaining

λ2 = (x− x◦)2 + (y − y◦)2 + (z − z◦)2.

Likewise, we obtain

(mx◦ + ny◦ + pz◦)
2

=
Ä
x−x◦
λ
x◦ + y−y◦

λ
y◦ + z−z◦

λ
z◦
ä2

= [(x−x◦)x◦+(y−y◦)y◦+(z−z◦)z◦]2
λ2 .

The elimination of λ2 yields the equation

(mx◦ + ny◦ + pz◦)
2 =

[(x− x◦)x◦ + (y − y◦)y◦ + (z − z◦)z◦]2
(x− x◦)2 + (y − y◦)2 + (z − z◦)2

,
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so that (5) now becomes

[(x− x◦)x◦ + (y − y◦)y◦ + (z − z◦)z◦]2
(x− x◦)2 + (y − y◦)2 + (z − z◦)2

− x2
◦ − y2

◦ − z2◦ + r2 = 0,

which is the equation of the circumscribed cone, whose intersection
with the equatorial plane z = 0 is

î
(x− x◦)x◦ + (y − y◦)y◦ − z2◦

ó2

(x− x◦)2 + (y − y◦)2 + z2◦
− x2

◦ − y2
◦ − z2◦ + r2 = 0.

We rewrite the last equation as the conic

Ä
r2 − y2

◦ − z2◦
ä
x2 − 2x◦y◦xy +

Ä
r2 − x2

◦ − z2◦
ä
y2

− 2
Ä
2x3
◦ + 2x◦y2

◦ + 2x◦z2◦ − x◦r2
ä
x

− 2
Ä
2y3
◦ + 2y◦x2

◦ + 2y◦z2◦ − y◦r2
ä
y

+
Ä
z4◦ − r2

Ä
x2
◦ + y2

◦ + z2◦
ää

= 0.

(6)

Hence in order for (6) represents a parabola, we require (†) that

∣∣∣∣∣∣

r2 − y2
◦ − z2◦ −x◦y◦

−x◦y◦ r2 − x2
◦ − z2◦

∣∣∣∣∣∣
=
Ä
z2◦ − r2

äÄ
x2
◦ + y2

◦ + z2◦ − r2
ä

= 0

This is satisfied when

x2
◦ + y2

◦ + z2◦ − r2 = 0 i.e., when P lies on the sphere and then the
cone is degenerate; or z2

◦
− r2 = 0.

The locus of P is obtained by allowing the coordinates x◦ , y◦ , z◦
to become variable; this is achieved by omiting the suffix ◦.

We then find that the required locus is given by

z2 − r2 = 0, except the points (0, 0,±r).
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(†) When

∣∣∣∣∣∣
A B

B C

∣∣∣∣∣∣
= 0 and

∣∣∣∣∣∣∣∣∣

A B D

B C E

D E F

∣∣∣∣∣∣∣∣∣
6= 0,

the general quadratic equation Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+
F = 0 represents a parabola.

A–127. Proposed by Henry Ricardo, Westchester Area Math Cir-
cle, Purchase, New York, USA. Let the function f(x) have a con-
tinuous second derivative on [−a, a]. Prove that if f(0) = 0, there
exists ξ ∈ (−a, a) such that f ′′(ξ) = (1/a2)[f(a) + f(−a)].

Solution 1 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University Newport News, VA, USA. Let f be a
function with a continuous second derivative on [−a, a]] with
f(0) = 0. By Taylor’s theorem, there exists ξ+ ∈ (0, a) and
ξ− ∈ (−a, 0) such that

f(a) = f ′(0)a+
f ′′(ξ+)

2
a2

and

f(−a) = −f ′(0)a+
f ′′(ξ−)

2
a2.

Adding these two equations yields

f(a) + f(−a) =
a2

2
(f ′′(ξ+) + f ′′(ξ−))

or
f(a) + f(−a)

a2
=

1

2
(f ′′(ξ+) + f ′′(ξ−)).

Next, because the second derivative is continuous on [−a, a], by
the Extreme Value Theorem, there exist real numbers m and M
such that

m ≤ f ′′(x) ≤M
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for all x ∈ [−a, a]. In particular

m ≤ f ′′(ξ+) ≤M and m ≤ f ′′(ξ−) ≤M.

Add these two equations and divide by two to obtain

m ≤ 1

2
(f ′′(ξ+) + f ′′(ξ−)) ≤M.

Now, by the Intermediate Value Theorem, there exists ξ ∈ (ξ−, ξ+) ⊂
(−a, a) such that

f ′′(ξ) =
1

2
(f ′′(ξ+) + f ′′(ξ−)).

Thus, there exists ξ ∈ (−a, a) such that

f ′′(ξ) =
f(a) + f(−a)

a2
.

Solution 2 by Michel Bataille, Rouen, France. By Taylor’s The-
orem and f(0) = 0, we have

f(a) = af ′(0) +
a2

2
f ′′(α) and f(−a) = −af ′(0) +

a2

2
f ′′(β)

for some α, β with α ∈ (0, a), β ∈ (−a, 0).

We deduce that

f(a) + f(−a)

a2
=

1

2
(f ′′(α) + f ′′(β)).

The function f ′′ is continuous on [β, α] and 1
2
(f ′′(α) + f ′′(β)) is a

real number between f ′′(α) and f ′′(β), hence

1

2
(f ′′(α) + f ′′(β)) = f ′′(ξ)

for some ξ ∈ [β, α] (by the Intermediate Value Theorem). Since
[β, α] ⊂ (−a, a), the conclusion follows.
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Solution 3 by Moti Levy, Rehovot, Israel. By Taylor’s theorem,

f(a) = f(0) + af
′
(0) +

a2

2
f
′′
(ξ1), 0 ≤ ξ1 ≤ a, (1)

f(−a) = f(0)− af ′(0) +
a2

2
f
′′
(ξ2), −a ≤ ξ2 ≤ 0. (2)

Adding both sides of (1) and (2), we get,

f(a) + f(−a) = a2
f
′′
(ξ1) + f

′′
(ξ2)

2
. (3)

Since the function f(x) have a continuous second derivative on
[−a, a], and

f
′′
(ξ1) ≤

f
′′
(ξ1) + f

′′
(ξ2)

2
≤ f ′′(ξ2),

or

f
′′
(ξ2) ≤

f
′′
(ξ1) + f

′′
(ξ2)

2
≤ f ′′(ξ1),

then by the intermediate value theorem there is a point ξ, such
that

ξ ∈ (−a, a), and f
′′
(ξ) =

f
′′
(ξ1) + f

′′
(ξ2)

2
.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the pro-
poser.

A–128. Proposed by Vasile Mircea Popa, Lucian Blaga University
of Sibiu, Romania. Prove that it holds:

∫ ∞

0

| cos(x)|
1 + x2

dx =
e2 + 1

e
arctan

Ç
1

e

å
.

Solution 1 by Michel Bataille, Rouen, France. From a classical
expansion in Fourier series (see [1], p. 26, for example), we have

| cosx| = 2

π
+

4

π

∞∑

n=1

(−1)n+1
cos(2nx)

4n2 − 1
(x ∈ R).
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We deduce that
∫ ∞

0

| cosx|
1 + x2

dx =
2

π

∫ ∞

0

dx

1 + x2
+

4

π

∫ ∞

0

( ∞∑

n=1

(−1)n+1
cos(2nx)

4n2 − 1

)
dx

1 + x2
.

Since
∞∑

n=1

∫ ∞

0

∣∣∣∣∣(−1)n+1
cos(2nx)

(4n2 − 1)(1 + x2)

∣∣∣∣∣ dx ≤
π

2

∞∑

n=1

1

4n2 − 1
<∞

we can interchange series and integral and obtain
∫ ∞

0

| cosx|
1 + x2

dx = 1 +
4

π

∞∑

n=1

(
(−1)n+1

4n2 − 1

∫ ∞

0

cos(2nx)

1 + x2
x

)

= 1 + 2
∞∑

n=1

(−1)n+1e−2n

4n2 − 1
.

(We have used the well-known
∫∞
0

dx
1+x2 = π

2
and a widespread

exercise that gives
∫∞
0

cos(ax)

1+x2 dx = π
2
e−a for a > 0 (see [1], p. 193

or [2], for example).)

Now, from 2
4n2−1

= 1
2n−1

− 1
2n+1

and arctanx =
∑∞
n=1

(−1)n−1x2n−1

2n−1

if |x| < 1, we deduce
∫ ∞

0

| cosx|
1 + x2

dx = 1 +
1

e

∞∑

n=1

(−1)n−1(e−1)2n−1

2n− 1
− (−e)

∞∑

n=1

(−1)n+2(e−1)2n+1

2n+ 1

= 1 +
1

e
arctan(1/e)− (−e)(arctan(1/e)− (1/e))

=

Ç
1

e
+ e

å
arctan

Ç
1

e

å
,

as desired.

[1] G. P. Tolstov, Fourier Series, Dover, 1962
[2] M. R. Spiegel, Complex Variables, McGraw Hill, 2009, Ex. 7-16,
p. 219

Solution 2 by Albert Stadler, Herrliberg, Switzerland. We ex-
pand | cos(x)| into a Fourier series and obtain

| cos(x)| = a0

2
+
∞∑

n=1

an cos(2nx)
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with

an =
4

π

∫ π
2

0
| cos(x)| cos(2nx) dx =

4

π

∫ π
2

0
cos(x) cos(2nx) dx

=
−4(−1)n

π(4n2 − 1)
.

The residue calculus gives

∫ ∞

0

cos(2nx)

1 + x2
dx =

1

2

∫ ∞

0

e2inx + e−2inx

1 + x2
dx

= 2πi

(
res

(
e2inx

2(1 + x2)
;x = i

)
− res

(
e−2inx

2(1 + x2)
;x = −i

))

=
π

2
e−2n, n ≥ 0.

Hence, ∫ ∞

0

| cos(x)|
1 + x2

dx = 1− 2
∞∑

n=1

(−1)n

4n2 − 1
e−2n

= 1−
∞∑

n=1

(−1)n
Ç

1

2n− 1
− 1

2n+ 1

å
e−2n

= −
∞∑

n=0

(−1)n+1

2n+ 1
e−2(n+1) +

∞∑

n=0

(−1)n

2n+ 1
e−2n

=

Ç
1

e2
+ 1

å
e
∞∑

n=0

(−1)n

2n+ 1
e−2n−1

=
e2 + 1

e
arctan

Ç
1

e

å
.

Solution 3 by the proposer. Let us denote:

I =
∫ ∞

0

|cos(x)|
1 + x2

dx. (1)

The function f(x) = |cos(x)| is periodic with period π and satisfies
Dirichlet’s conditions. Also, the function are even. We expand the
function in the Fourier series:
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f(x) = a0 +
∞∑

n=1

an cos(2nx)

where:

a0 =
1

π

∫ π

0
|cos(x)|dx; an =

2

π

∫ π

0
|cos(x)| cos (2nx)dx.

Calculating these integrals, we obtain:

a0 =
2

π
; an = − 4

π
· (−1)n

4n2 − 1
.

We have:

f(x) =
2

π
− 4

π

∞∑

n=1

(−1)n

4n2 − 1
cos (2nx)dx.

Substituting f(x) in the expression (1) of I , result:

I =
2

π

∫ ∞

0

1

1 + x2
dx− 4

π

∫ ∞

0

∞∑

n=1

(−1)n cos (2nx)

(4n2 − 1)(1 + x2)
dx.

So:

I = 1− 4

π

∞∑

n=1

(−1)n

4n2 − 1

∫ ∞

0

cos (2nx)

1 + x2
dx.

We now use the following relationship:

∫ ∞

0

cos (mx)

1 + x2
dx =

π

2
e−m, where m > 0.

This relation is Laplace’s integral and is well known. It is easily
proved for example using the properties of the Laplace transform.
We obtained the value of the integral I:

I = 1− 2
∞∑

n=1

(−1)n

(4n2 − 1)e2n
. (2)
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We will calculate the sum of the series:

S =
∞∑

n=0

(−1)n

(4n2 − 1)e2n

We have:

(−1)n

(4n2 − 1)e2n
=

1

2

[
(−1)n

(2n− 1)e2n
− (−1)n

(2n+ 1)e2n

]

So:

S =
1

2

[ ∞∑

n=0

(−1)n

(2n− 1)e2n
−
∞∑

n=0

(−1)n

(2n+ 1)e2n

]
=

1

2
(A−B).

We calculate B :

B =
∞∑

n=0

(−1)n

(2n+ 1)e2n
.

We have:

B =
∞∑

n=0

∫ 1

0
(−1)n

x2n

e2n
dx =

∫ 1

0

∞∑

n=0

(
−x

2

e2

)n
=
∫ 1

0

1

1 + x2

e2

dx

(we have 0 < x < 1 and −1 <
x2

e2
< 0 ).

We get immediately:

B = e arctan

Ç
1

e

å
.

Likewise it is calculated A and we obtain:

A = −1− 1

e
arctan

Ç
1

e

å
.
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Results:

S =
1

2
(A−B) =

−e− arctan

Ç
1

e

å
− e2 arctan

Ç
1

e

å

2e

We have:

S =
∞∑

n=0

(−1)n

(4n2 − 1)e2n
=
∞∑

n=1

(−1)n

(4n2 − 1)e2n
− 1

Result:

∞∑

n=1

(−1)n

(4n2 − 1)e2n
= S + 1 =

e− arctan

Ç
1

e

å
− e2 arctan

Ç
1

e

å

2e

Replacing in the relationship (2) we obtain:

∫ ∞

0

cos(x)

1 + x2
dx =

e2 + 1

e
arctan

Ç
1

e

å
.

Thus, the problem is solved.

Solution 4 by Moti Levy, Rehovot, Israel. Solution A: Using
Fourier series:

The Fourier series of |cos(x)| in the interval [−π, π] is

|cos(x)| = 2

π
+

4

π

∞∑

m=1

(−1)m

1− 4m2
cos(2mx)

By interchanging the order of summation and integration,

I =
∫ ∞

0

|cos(x)|
1 + x2

dx =
2

π

∫ ∞

0

1

1 + x2
dx+

4

π

∞∑

m=1

(−1)m

1− 4m2

∫ ∞

0

cos(2mx)

1 + x2
dx

∫ ∞

0

cos(2mx)

1 + x2
dx =

π

2
e−2m.
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I =
∫ ∞

0

|cos(x)|
1 + x2

dx = 1 + 2
∞∑

m=1

(−1)m

1− 4m2
e−2m

The Taylor series for arctan(z) is

arctan(z) =
∞∑

m=0

(−1)m

2m+ 1
z2m+1, |z| ≤ 1.

It follows that

∞∑

m=0

(−1)m

2m+ 1
zxm =

arctan
Ä√
z
ä

√
z

,

∞∑

m=0

(−1)m

2m− 1
zm = −1−√z arctan

Ä√
z
ä
.

The partial fractions of (−1)m

2m−1
is

(−1)m

2m− 1
=

1

2

(−1)m

2m+ 1
− 1

2

(−1)m

2m− 1
.

It follows that

∞∑

m=1

(−1)m

1− 4m2
zm = −1

2
+

(1 + z) arctan
Ä√
z
ä

√
z

.

Setting z = e−2, we get,

∫ ∞

0

|cos(x)|
1 + x2

dx =
(1 + e−2) arctan(e−1)

e−1
=
e2 + 1

e
arctan

Ç
1

e

å
.

Solution B: By partitioning the integration interval:

Let
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I :=
∫ ∞

0

|cos(x)|
1 + x2

dx =
∞∑

k=0

∫ kπ+π
2

kπ

cos(x)

1 + x2
dx−

∫ (k+1)π

kπ+π
2

cos(x)

1 + x2
dx

=
1

2

Ñ
∞∑

k=−∞

(∫ 2kπ+5π
2

2kπ+3π
2

cos(x)

1 + x2
dx−

∫ 2kπ+3π
2

2kπ+π
2

cos(x)

1 + x2
dx

)é

=
1

2

∞∑

k=−∞

Ñ∫ π
0

cos
Ä
y + 2kπ + 3π

2

ä

1 +
Ä
y + 2kπ + 3π

2

ä2dy −
∫ π

0

cos
Ä
y + 2kπ + π

2

ä

1 +
Ä
y + 2kπ + π

2

ä2dy
é

=
1

2

∞∑

k=−∞

Ñ∫ π
0

sin(y)

1 +
Ä
y + 2kπ + 3π

2

ä2dy +
∫ π

0

sin(y)

1 +
Ä
y + 2kπ + π

2

ä2dy
é
.

By interchanging the order of summation and integration,

I =
1

2

∫ π

0
sin(y)

∞∑

k=−∞

Ñ
1

1 +
Ä
y + 2kπ + 3π

2

ä2 +
1

1 +
Ä
y + 2kπ + π

2

ä2

é
dy.

=
1

2

∫ π

0
sin(y)

∞∑

k=−∞

Ñ
1

1 +
Ä
y + 2kπ + 3π

2

ä2 +
1

1 +
Ä
y + 2kπ + π

2

ä2

é
dy

∞∑

k=−∞

1

1 +
Ä
y + 2kπ + 3π

2

ä2 =
e2 − 1

2 + 2e2 − 4e sin(y)

∞∑

k=−∞

1

1 +
Ä
y + 2kπ + π

2

ä2 =
e2 − 1

2 + 2e2 + 4e sin(y)

e2 − 1

2 + 2e2 − 4e sin(y)
+

e2 − 1

2 + 2e2 + 4e sin(y)

=
e4 − 1

e4 + 1 + 2e2 cos(2y)
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I =
1

2

∫ π

0

(e4 − 1) sin y

e4 + 1 + 2e2 cos(2y)
dy

=
1

2

∫ π

0

(e4 − 1) sin y

e4 + 1 + 2e2(2 cos2(y)− 1)
dy

=
1

2

∫ π

0

(e4 − 1) sin y

(e2 − 1)2 + 4e2 cos2(y)
dy

=
1

2

(e4 − 1)

(e2 − 1)2

∫ π

0

sin y

1 +
(

2e
e2−1

)2
cos2(y)

dy

=
1

2

(e4 − 1)

(e2 − 1)2
2 arctan

(
2e
e2−1

)

2e
e2−1

=
1

2

e2 + 1

e
arctan

( 1
e

+ 1
e

1− 1
e
1
e

)
=
e2 + 1

e
arctan

Ç
1

e

å
∼= 1.0879.

A–129. Proposed by Vasile Cîrtoaje, Petroleum-Gas University of
Ploiesţi, Romania Romania. Prove that 7

6
is the least positive value

of the constant k such that

xk1 + xk2 + xk3 + xk4 + xk5 ≥ 5

for any nonnegative real numbers xi with at most one xi < 1 and
x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5.

Solution 1 by the proposer. Assuming x1 = x2 := x, x3 =

x5 = 1 and x4 =
5− 2x− x2

2
, the constraints are satisfied for

x ∈ [1,
√

6 − 1], while the inequality becomes f(x) ≥ 0, where

f(x) = 2xk +

(
5− 2x− x2

2

)k
− 3. From

1

k
f ′(x) = 2xk−1 − (x+ 1)

(
5− 2x− x2

2

)k−1

,

1

k
f ′′(x) = 2(k − 1)xk−2 −

(
5− 2x− x2

2

)k−1
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+(k − 1)(x+ 1)2
(

5− 2x− x2

2

)k−2

,

we find f(1) = f ′(1) = 0 and f ′′(1) = k(6k − 7). From the
necessary condition f ′′(1) ≥ 0, we get k ≥ 7/6. To show that
7/6 is the least positive value of k, we need to prove the required
inequality for k = 7/6. By Lemma below, it suffices to show that
E(a, b, c, d, e) ≥ 0 for a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 such that
ab+ ac+ bd+ ce+ de = 5, where

E(a, b, c, d, e) = ak + bk + ck + dk + ek − 5.

For fixed b, c and e, we may assume that a and E are func-
tions of d. By differentiating the equality constraint, we get

(b+ c)a′ + b+ e = 0, a′ =
−(b+ e)

b+ c
≥ −(b+ e)

b+ d
=
d− e
b+ d

− 1

≥ d− e
a+ d

− 1 =
−(a+ e)

a+ d
.

Denoting E(a, b, c, d, e) by f(d), we have

6f ′(d)

7
= d1/6 + a1/6a′ ≥ d1/6 − a1/6(a+ e)

a+ d
.

We claim that f ′(d) ≥ 0. To prove this, it suffices to show that
a+ d

a+ e
≥
Åa
d

ã1/6
. By Bernoulli’s inequality,

Åa
d

ã1/6
=

Ç
1 +

a− d
d

å1/6

≤ 1 +
a− d

6d
=
a+ 5d

6d
.

So, it is enough to show that
a+ d

a+ e
≥ a+ 5d

6d
. From 5 = ab+ ac+

bd + ce + de ≥ ad + ad+ d2 + de + de, we get e ≤ 5− 2ad− d2

2d

and a+ e ≤ 5− d2

2d
, therefore

a+ d

a+ e
−a+ 5d

6d
≥ 2d(a+ d)

5− d2
−a+ 5d

6d
=
a(13d2 − 5) + d(17d2 − 25)

6d(5− d2)
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≥ d(13d2 − 5) + d(17d2 − 25)

6d(5− d2)
=

5(d2 − 1)

5− d2
≥ 0.

Since f ′(d) ≥ 0, f(d) is increasing and has the minimum value
when d is minimum, hence when d = 1. So, we need to show that

a7/6 + b7/6 + c7/6 + e7/6 ≥ 4

for a ≥ b ≥ c ≥ 1 ≥ e ≥ 0 such that ab+ ac+ b+ ce+ e = 5.

For fixed a and e, we may assume that b is a decreasing
function of c. By differentiating the equality constraint, we get
(a+1)b′+a+e = 0. Denoting the left side of the desired inequality
by g(c), we have

6g′(c)

7
= c1/6 + b1/6b′ = c1/6 − b1/6(a+ e)

a+ 1
≥ 1− a1/6(a+ e)

a+ 1
.

We claim that g′(d) ≥ 0. To prove this, it suffices to show that
a+ 1

a+ e
≥ a1/6 . By Bernoulli’s inequality,

a1/6 = [1 + (a− 1)]1/6 ≤ 1 +
a− 1

6
=
a+ 5

6
.

So, it suffices to show that
a+ 1

a+ e
≥ a+ 5

6
. From 5 = ab + ac +

b+ ce+ e ≥ a+ a+ 1 + e+ e, we get a+ e ≤ 2, therefore

a+ 1

a+ e
− a+ 5

6
≥ a+ 1

2
− a+ 5

6
=
a− 1

3
≥ 0.

Since g′(c) ≥ 0, g(c) is increasing and has the minimum value
when c is minimum (b is maximum), that is when c = 1 or b = a.
Consider now these cases.

Case 1: c = 1. We need to show that a7/6 + b7/6 + e7/6 ≥ 3
for a ≥ b ≥ 1 ≥ e ≥ 0 such that ab + a + b + 2e = 5. Let

x =
a+ b

2
≥ 1. Since, by Jensen’s inequality and Bernoulli’s

inequality,

a7/6+b7/6 ≥ 2x7/6 = 2[1+(x−1)]7/6 ≥ 2

ñ
1 +

7(x− 1)

6

ô
=

7x− 1

3
,
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we have

a7/6 + b7/6 + e7/6 − 3 ≥ 7x− 1

3
− 3 =

7x− 10

3
≥ 0

for x ≥ 10/7. For x ∈ [1, 10/7], since e =
5− 2x− ab

2
≥

5− 2x− x2

2
> 0, we have

a7/6 + b7/6 + e7/6 − 3 ≥ 2x7/6 +

(
5− 2x− x2

2

)7/6

− 3 := G(x).

If G′(x) ≥ 0, then G(x) is increasing, therefore G(x) ≥ G(1) = 0.
Since

G′(x) =
7

3
x1/6 − 7

6
(x+ 1)

(
5− 2x− x2

2

)1/6

=
7

6
x1/6(x+ 1)


 2

x+ 1
−
(

5− 2x− x2

2x

)1/6

,

we need to show that H(x) ≥ 0, where H(x) =

Ç
2

x+ 1

å6

−
5− 2x− x2

2x
. Indeed, since

Ç
2

x+ 1

å6

≥ 2

Ç
2

x+ 1

å3

− 1, we have

H(x) ≥ 16

(x+ 1)3
− 1− 5− 2x− x2

2x
=

16

(x+ 1)3
− 5− x2

2x

=
x5 + 3x4 − 2x3 − 14x2 + 17x− 5

2x(x+ 1)3

=
(x− 1)2(x3 + 5x2 + 7x− 5)

2x(x+ 1)3
≥ 0.

Case 2: b = a. We need to show that 2a7/6 + c7/6 + e7/6 ≥ 4 for
a ≥ c ≥ 1 ≥ e ≥ 0 such that a2 + ac+ a+ ce+ e = 5. For fixed
e, we may assume that a is a function of c. By differentiating the
equality constraint, we get

(2a+ c+ 1)a′ + a+ e = 0, a′ =
−(a+ e)

2a+ c+ 1
≥ −(a+ e)

2(a+ 1)
.
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Denoting the left side of the desired inequality by h(c), we have

6h′(c)

7
= c1/6+2a1/6a′ = c1/6− a

1/6(a+ e)

a+ 1
≥ 1− a

1/6(a+ e)

a+ 1
≥ 0.

The last inequality was proved before. Since h′(c) ≥ 0, h(c) is
increasing and has the minimum value when c is minimum, hence
when c = 1. So, we need to show that 2a7/6 + e7/6 ≥ 3 for
a ≥ 1 ≥ e ≥ 0 such that a2 + 2a+ 2e = 5. If a ≥ 10/7, then

2a7/6 + e7/6 − 3 ≥ 2a7/6 − 3 > 0,

and if a ∈ [1, 10/7], then

2a7/6 + e7/6 − 3 = 2a7/6 +

(
5− 2a− a2

2

)7/6

− 3 ≥ 0.

The last inequality was proved at Case 1.

The proof is completed. The equality occurs for x1 = x2 = x3 =
x4 = x5 = 1.

Lemma. Let x1, x2, x3, x4, x5 be nonnegative real numbers such
that at most one of them is less than 1 and x1x2 + x2x3 + x3x4 +
x4x5+x5x1 = 5, and let E(x1, x2, x3, x4, x5) be a symmetric and in-
creasing function with respect to each variable. If E(a, b, c, d, e) ≥
0 for any a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0 such that ab+ac+ bd+ ce+
de = 5, then E(x1, x2, x3, x4, x5) ≥ 0.

Proof. Let T = (T1, T2, T3, T4, T5) and t = (t1, t2, t3, t4, t5) be two
decreasing sequences of positive real numbers. By Karamata
majorization inequality applied to the convex function f(x) = ex ,
if T1 · · · Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, then

T1 + T2 + T3 + T4 + T5 ≥ t1 + t2 + t3 + t4 + t5.

If (a, b, c, d, e) is a permutation of (x1, x2, x3, x4, x5) such that
a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0, then

E(a, b, c, d, e) = E(x1, x2, x3, x4, x5).
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Let T = (ab, ac, bd, ce, de) be a decreasing sequence, and t a de-
creasing permutation of the sequence (x1x2, x2x3, x3x4, x4x5, x5x1).
Since T1 · · · Tj ≥ t1 · · · tj for j = 1, 2, 3, 4, 5, by Karamata’s inequal-
ity we have

ab+ ac+ bd+ ce+ de ≥ x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 5.

In the case ab+ac+ bd+ ce+ de > 5, by decreasing the numbers
a, b, c, d, e to have ab + ac + bd + ce + de = 5 and to keep the
constraint a ≥ b ≥ c ≥ d ≥ 1 ≥ e ≥ 0, the function E(a, b, c, d, e)
decreases, therefore

E(a, b, c, d, e) ≤ E(x1, x2, x3, x4, x5).

On the other hand, by hypothesis, E(a, b, c, d, e) ≥ 0. So, we have

E(x1, x2, x3, x4, x5) ≥ E(a, b, c, d, e) ≥ 0.

Solution 2 by Moti Levy, Rehovot, Israel. Let

x1 = 1− e1, x2 = 1 + e2, x3 = 1 + e3, x4 = 1 + e4, x5 = 1 + e5.

Then 1 > e1 ≥ 0, and e2, e3, e4, e5 ≥ 0.

In terms of ei the cost function Sk becomes

Sk :=
5∑

i=1

xki = (1− e1)k+(1 + e2)
k+(1 + e3)

k+(1 + e4)
k+(1 + e5)

k,

and the constraint becomes

2e2 − 2e1 + 2e3 + 2e4 + 2e5 − e1e2 + e2e3 − e1e5 + e3e4 + e4e5 = 0,
1 > e1 ≥ 0, and e2, e3, e4, e5 ≥ 0.

(1)
Let us proceed using method of Lagrange multipliers:

The Lagrange function is

L(e1, e2, e3, e4, e5, λ)

= Sk+λ(2e2 − 2e1 + 2e3 + 2e4 + 2e5 − e1e2 + e2e3 − e1e5 + e3e4 + e4e5).
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We compute the partial derivatives and set them to zero

∂L

∂e1
= −k(1− e1)k−1 − λ(2 + e2 + e5) = 0,

∂L

∂e2
= k(1 + e2)

k−1 + λ(2− e1 + e3) = 0,

∂L

∂e3
= k(1 + e3)

k−1 + λ(2 + e2 + e4) = 0,

∂L

∂e4
= k(1 + e4)

k−1 + λ(2 + e3 + e5) = 0,

∂L

∂e5
= k(1 + e5)

k−1 + λ(2 + e4 − e1) = 0, (2)

∂L

∂λ
= 2e2 − 2e1 + 2e3 + 2e4 + 2e5 − e1e2 + e2e3 − e1e5 + e3e4 + e4e5.

which imply

λ =
k(1− e1)k−1

2 + e2 + e5
,

λ =
k(1 + e2)

k−1

2− e1 + e3
,

λ =
k(1 + e3)

k−1

2 + e2 + e4
,

λ =
k(1 + e4)

k−1

2 + e3 + e5
,

λ =
k(1 + e5)

k−1

2 + e4 − e1
. (3)

Now we use the symmetries in the constraint function and the cost
function to simplify the system of equations (3).
Observing the original constraint equation x1x2 + x2x3 + x3x4 +
x4x5 + x5x1 = 5,we can see that x2 and x5 play symmetric roles,
as do x3 and x4 .
This symmetry in the constraint suggests that a solution with
e3 = e4 and e2 = e5 might indeed exist.

Our partial derivative equations (2) under these assumptions re-
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duces to 3 equations:

λ =
k(1− e1)k−1

2(1 + e2)
,

λ =
k(1 + e2)

k−1

2− e1 + e3
,

λ =
k(1 + e3)

k−1

2 + e2 + e3
. (4)

The reduced system of equations (4) is consistent with the original
system (3).

The simplified problem is find minimum of

Sk(e1) = (1− e1)k + 2 + 2(1 + e3)
k

= (1− e1)k + 2 + 2
(√

2
√
e1 + 2− 1

)k
.

subject to the constraint

e3 =
√

2
√
e1 + 2− 2, 1 > e1 ≥ 0.

We conclude that it is indeed possible to deduce that a solution
exists with e3 = e4 and e2 = e5 .
This deduction is based on:

1. The symmetry in the original problem.

2. The consistency of this assumption with the Lagrange multiplier
equations.

3. The existence of feasible solutions in the simplified system.

Moreover, this symmetry suggests that if there is a unique mini-
mum, it must have this form (e3 = e4 and e2 = e5 ).
If we find a solution with this symmetry, we can be confident that
it’s the global minimum.

Now we want to show that k ≥ 7
6

is necessary and sufficient
condition for Sk ≥ 5 under the constraint (1).
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a) Necessary condition:

∂Sk

∂e1
=
∂
Å
(1− e1)k + 2 + 2

Ä√
2
√
e1 + 2− 1

äkã

∂e1

= k

√
2
Ä√

2
√
e1 + 2− 1

äk−1 − (1− e1)k−1√e1 + 2√
e1 + 2

.

Let

f(e1) =
√

2
(√

2
√
e1 + 2− 1

)k−1−(1− e1)k−1√e1 + 2 ≥ 0, 0 ≤ e1 < 1.

(5)

The sign of
∂Sk

∂e1
is the same of the sign of f(e1). Thus, showing

that f(e1) ≥ 0 for 0 ≤ e < 1 is equivalent to showing that

1

2
ln(2) + (k − 1) ln

(√
2
√
e1 + 2− 1

)

≥ (k − 1) ln(1− e1) +
1

2
ln(e1 + 2). (6)

Let
gk(e1) =

1

2
ln(2) + (k − 1) ln

(√
2
√
e1 + 2− 1

)

− (k − 1) ln(1− e1)−
1

2
ln(e1 + 2), (7)

then (6) is equivalent to

gk(e1) ≥ 0. (8)

We have gk(0) = 0. For gk(e1) to be non-negative for e1 > 0, a
necessary condition is ∂g

∂e1

∣∣∣
e1=0
≥ 0.

∂gk

∂e1
=

k − 1√
2
Ä√

2
√
e1 + 2− 1

ä√
e1 + 2

+
k − 1

1− e1
− 1

2(e1 + 2)

(9)
∂gk

∂e1

∣∣∣∣∣
e1=0

=
3

2
k − 7

4
≥ 0. (10)
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It follows that necessary condition is k ≥ 7
6
.

b) Sufficient condition

By definition of the minimum we have

min{Sk(ei)} ≤ min{Sk(e3 = e4 and e2 = e5 = 0)}.
Since Sk(e3 = e4 and e2 = e5 = 0) ≤ Sk(ei), then

min{Sk(ei)} ≥ min{Sk(e3 = e4 and e2 = e5 = 0)}.
We conclude that

min{Sk(ei)} = min{Sk(e3 = e4 and e2 = e5 = 0)},
which implies that

Sk(ei) ≥ min{Sk(e3 = e4 and e2 = e5 = 0)}

We have S7
6
(e3 = e4 and e2 = e5 = e1 = 0) = 5, hence if we show

that the derivative
∂g7

6

∂e1
≥ 0 for 0 ≤ e < 1 then

min
{
S7

6
(e3 = e4 and e2 = e5 = 0)

}
= 5

and we are done.
∂g7

6

∂e1
=

1

6
√

2
Ä√

2
√
e1 + 2− 1

ä√
e1 + 2

+
1

6(1− e1)
− 1

2(e1 + 2)
≥ 0

which is equivalent to
√
e1 + 2

3
√

2
Ä√

2
√
e1 + 2− 1

ä +
e1 + 2

3(1− e1)
≥ 1, for 0 ≤ e < 1

Setting t :=
√
e1 + 2,

t

3
√

2
Ä√

2t− 1
ä +

t2

3(3− t2) ≥ 1, for
√

2 ≤ t <
√

3

or
7
Ä
t−√2

äÄ
t2 + 3

7

√
2t− 9

7

ä

3
√

2
Ä√

2t− 1
ä
(3− t2) ≥ 0 for

√
2 ≤ t <

√
3

One can easily check that that t2+ 3
7

√
2t− 9

7
≥ 0 for

√
2 ≤ t < √3.
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A–130. Proposed by Michel Bataille, Rouen, France. For each
positive integer n, let

In =
∫ 1

0

x(x2n − 1) ln(x+ 1)

x2 − 1
dx.

Prove that there exist real numbers a, b such that

lim
n→∞(In − (a+ b lnn)) = 0.

Solution 1 by Albert Stadler, Herrliberg, Switzerland. We prove
in a first step that

∫ 1

0

x(x2n − 1)ln(x+ 1)

x2 − 1
dx =

n∑

k=1

H2k −Hk

2k

from which will follow that a and b exist. (Hk denotes as usual the
kth harmonic number.)

In a second step we prove that a = −π2

24
+ 1

2
γln2 + ln22

2
, b = ln2

2
.

We have

∫ 1

0
xk−1ln(1− x) dx =

xk − 1

k
ln(1− x)

∣∣∣∣∣

x=1

x=0

−1

k

∫ 1

0

xk − 1

x− 1
dx = −Hk

k
.

So

∫ 1

0

x(x2n − 1)ln(x+ 1)

x2 − 1
dx =

∫ 1

0

x(x2n − 1)ln
(
1−x2

1−x
)

x2 − 1
dx =

=
∫ 1

0

x(x2n − 1)ln(1− x2)

x2 − 1
dx−

∫ 1

0

x(x2n − 1)ln(1− x)

x2 − 1
dx =

=
1

2

∫ 1

0

(xn − 1)ln(1− x)

x− 1
dx−

∫ 1

0

x(x2n − 1)ln(1− x)

x2 − 1
dx =

=
n∑

k=1

1

2

∫ 1

0
xk−1ln(1− x) dx−

n∑

k=1

∫ 1

0
x2k−1ln(1− x) dx =

n∑

k=1

H2k −Hk

2k
.

In the third last step we have performed the substitution y=x2 and
then renamed y as x.
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It is known (see for instance https://en.wikipedia.org/wiki/Harmonic_number)
that

Hn = lnn + γ + O

Ç
1

n

å

as n tends to infinity, where γ is the Euler-Mascheroni constant.
Put ak := H2k −Hk − ln2 . Then ak = O

Ä
1
k

ä
and

n∑

k=1

H2k −Hk

2k
=

ln2

2

n∑

k=1

1

k
+

n∑

k=1

ak

2k
=

ln2

2
Hn +

∞∑

k=1

ak

2k
−

∞∑

k=n+1

ak

2k

=
ln2

2
lnn +

ln2

2
γ +

∞∑

k=1

ak

2k
−

∞∑

k=n+1

ak

2k
+ O

Ç
1

n

å

=
ln2

2
lnn +

ln2

2
γ +

∞∑

k=1

ak

2k
+ O

Ç
1

n

å
.

In particular, if a := ln2
2
γ +

∑∞
k=1

H2k−Hk−ln2
2k

, b := ln2
2

, then

lim
n→∞(In − (a+ b lnn)) = lim

n→∞

(
n∑

k=1

H2k −Hk

2k
− (a+ b lnn )

)
= 0.

So there are real numbers a, b such that limn→∞(In − (a+ b lnn)) = 0.

We finally evaluate a (although this is not required).

We will establish the following equations

1.
∑n
k=1

Hk
k

= 1
2
H2
n + 1

2

∑n
k=1

1
k2

2.
∑∞
k=1 (−1)k−1Hk

k
= π2

12
− 1

2
ln22

Proof of (i)

We proceed by induction. The claim holds true for n=1. Then

n+1∑

k=1

Hk

k
=
Hn+1

n+ 1
+

n∑

k=1

Hk

k
=
Hn+1

n+ 1
+

1

2
H2
n +

1

2

n∑

k=1

1

k2

=
Hn+1

n+ 1
+

1

2

Ç
Hn+1 −

1

n+ 1

å2

+
1

2

n∑

k=1

1

k2

=
1

2
H2
n+1 +

1

2

n+1∑

k=1

1

k2
.
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Proof of (ii)

A generating function of the harmonic numbers is (see for instance
https://en.wikipedia.org/wiki/Harmonic_number)

∞∑

k=1

Hkz
k =
−ln(1− z)

1− z .

Hence ∞∑

k=1

(−1)k−1Hkz
k−1 =

ln(1 + z)

z(1 + z)
.

We integrate in the limits 0 and 1 and get

∞∑

k=1

(−1)k−1Hk

k
=
∫ 1

0

ln(1 + z)

z(1 + z)
dz =

∫ 1

0

Ç
1

z
− 1

z + 1

å
ln(1 + z) dz

=
∞∑

k=1

(−1)k−1

k

∫ 1

0
zk−1dz − 1

2
ln2(1 + z)

∣∣∣∣∣

z=1

z=0

=
∞∑

k=1

(−1)k−1

k2
− 1

2
ln22 =

Ç
1− 2

4

å ∞∑
k=1

1

k2
− 1

2
ln22 =

π2

12
− 1

2
ln22 .

It follows from (i) and (ii) that

n∑

k=1

H2k −Hk

2k
=

1

2

(
2n∑

k=1

Hk

k
−

2n∑

k=1

(−1)k−1Hk

k
−

n∑

k=1

Hk

k

)

=
1

2

(
1

2
H2

2n +
1

2

2n∑

k=1

1

k2
−
∞∑

k=1

(−1)k−1Hk

k
+

∞∑

k=2n+1

(−1)k−1Hk

k
−
Ç

1

2
H2
n +

1

2

n∑

k=1

1

k2

å)

=
1

2

Å
1

2

(
ln(2n) + γ + O

(
1

n

))2

+
π2

12
+ O

(
1

n

)
−
Å
π2

12
− 1

2
ln22

ã
+ O

(
ln(2n+ 1)

2n+ 1

)

−
Å
1

2

(
ln(n) + γ + O

(
1

n

))2

+
π2

12
+ O

(
1

n

)ãã

=
ln2

2
lnn − π2

24
+

1

2
γln2 +

ln22

2
+ O

(
lnn

n

)

and so

a = −π
2

24
+

1

2
γln2 +

ln22

2
≈ 0.029040695597809973.
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Solution 2 by the proposer. Since x(x2n−1)

x2−1
=

n∑
k=1

x2k−1 , we have

In =
n∑
k=1

∫ 1
0 x

2k−1 ln(1 + x) dx.

Using ln(1 + x) =
∞∑
n=1

(−1)n+1 xn

n
, we calculate

∫ 1

0
x2k−1 ln(1 + x) dx =

∫ 1

0

( ∞∑

n=1

(−1)n+1
xn+2k−1

n

)
dx

=
∞∑

n=1

(−1)n+1

n

∫ 1

0
xn+2k−1 dx

=
∞∑

n=1

(−1)n+1

n(n+ 2k)
=

1

2k

∞∑

n=1

(−1)n+1

Ç
1

n
− 1

n+ 2k

å

=
1

2k

(
ln 2−

∞∑

n=1

(−1)n+1

n+ 2k

)

=
1

2k

Ä
ln 2− (ln 2−H2k)

ä
=
H2k

2k

where Hm =
∑m
j=1

(−1)j+1

j
denotes the mth skew-harmonic num-

ber.
(the interchange

∑
/
∫

is possible since

∞∑

n=1

∫ 1

0

∣∣∣∣∣(−1)n+1
xn+2k−1

n

∣∣∣∣∣ dx =
∞∑

n=1

1

n(n+ 2k)
<∞).

From H2k

2k
∼ ln 2

2k
as k → ∞ and the Stolz-Cesaro Theorem, we

deduce that

In =
n∑

k=1

H2k

2k
∼ ln 2

2

n∑

k=1

1

k
∼ ln 2

2
· lnn as n→∞.

Now, let Un = In − ln 2
2

lnn =

Ç
n∑
k=1

H2k

2k

å
− ln 2

2
lnn. We have

Un+1 − Un =
H2n+2

2(n+ 1)
− ln 2

2
ln

Ç
1 +

1

n

å
.

It is well-known that Hm = ln 2 + (−1)m+1
∫ 1
0

xm

1+x
dx (m ≥ 1) and

it follows that



Volume 11, No. 2, Autumn 2024 275

Un+1−Un =
ln 2

2

(
1

n

Ç
1 +

1

n

å−1

− ln

Ç
1 +

1

n

å)
− 1

2(n+ 1)

∫ 1

0

x2n+2

1 + x
dx.

As n→∞, we have

1

n

Ç
1 +

1

n

å−1

− ln

Ç
1 +

1

n

å
=

1

n

Ç
1− 1

n
+ o(1/n)

å
−
Ç

1

n
− 1

2n2
+ o(1/n2)

å

= − 1

2n2
+ o(1/n2)

and ∫ 1

0

x2n+2

1 + x
dx =

1

4n
+ o(1/n)

(since lim
n→∞(2n+ 2)

∫ 1
0
x2n+2

1+x
dx =

[
1

1+x

]
x=1

= 1
2
) and therefore

Un+1 − Un ∼
k

n2

where k = −1 + ln 4

8
. Thus, the series

∑

n≥1

(Un+1 − Un) is conver-

gent and lim
n→∞Un is a real number a.

We can now conclude: If b = ln 2
2

, then lim
n→∞(In − b lnn) = a, and

the result follows.

Solution 3 by Moti Levy, Rehovot, Israel.

x(x2n − 1)

x2 − 1
=

n∑

k=1

x2k−1

In =
∫ 1

0

n∑

k=1

x2k−1 ln(x+ 1)dx =
n∑

k=1

∫ 1

0
x2k−1 ln(x+ 1)dx

∫ 1

0
x2k−1 ln(x+ 1)dx =

H2k −Hk

2k

In =
1

2

n∑

k=1

1

k
(H2k −Hk)

Now we apply the Abel’s summation formula with

bk :=
1

k
, ak := H2k −Hk.
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In =
1

2
(H2n −Hn)Hn −

1

2

n−1∑

k=1

Hk

Ç
1

2k + 2
+

1

2k + 1
− 1

k + 1

å

=
1

2
(H2n −Hn)Hn −

1

2

n−1∑

k=1

Hk

(2k + 1)(2k + 2)
.

∞∑

k=1

Hk

(2k + 1)(2k + 2)
=
π2

12
− ln2(2).

The asymptotic expression for Hn is

Hn ∼ ln(n) + γ + O(
1

n
).

The asymptotic expression for H2n is

H2n ∼ ln(n) + γ + ln(2) + O(
1

n
)

It follows that the asymptotic expression for H2n −Hn is

H2n −Hn ∼ ln(2) + O(
1

n
)

The asymptotic expression for (H2n −Hn)Hn is

(H2n −Hn)Hn ∼
Ç

ln(2) + O(
1

n
)

åÇ
ln(n) + γ + O(

1

n
)

å

= ln(2) ln(n) + γ ln(2) + O(
ln(n)

n
)

In ∼
ln(2)

2
ln(n) + γ

ln(2)

2
− π2

24
+

ln2(2)

2
+ O(

ln(n)

n
)

We conclude that indeed limn→∞(In − (a+ b ln(n))) = 0, where

a = γ
ln(2)

2
− π2

24
+

ln2(2)

2
,

b =
ln(2)

2
.
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