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On Goddyn’s iterated
circumcenters conjecture

Roger Lidón Ardanuy

1 Introduction

In this paper we prove a conjecture proposed by Goddyn [1], which
was known to the author through its page at the Open Problem
Garden [2]. The conjecture, as shown in [2], states the following:

Theorem 1. Let P1, P2, P3, . . . be a sequence of points in Rn such
that for every i ≥ n+2, the points Pi−1, Pi−2, . . . Pi−n−1 are distinct,
lie on a unique sphere, and furthermore, Pi is the center of this
sphere. If this sequence is periodic, then its period is exactly 2n+4.

Before going into the proof, we need to take care of the corner case
n = 1. Indeed, if n = 1, then Pi is the midpoint of Pi−1 and Pi−2 .
Therefore, we have that

|
−−−−→
Pi−1Pi| = 2|

−−−−−→
Pi−2Pi−1|.

The above relation easily implies that the sequence of points must
converge, and in particular, can not be periodic. So, from now on,
let us assume that n ≥ 2.

2 Proof preliminaries

To prove theorem 1, we are going to study a more general type of
sequences and prove results stronger than Goddyn’s problem itself,
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then use those infer the original problem. Before jumping in, let
us define the following generalization of the perpendicular bisector
hyperplane of two points.

Definition 1. Given A,B ∈ Rn , define m(A,B, λ) as the hyper-
plane through point λA+(1−λ)B orthogonal to line AB . Therefore,
m(A,B, λ) is given by the equation

(−→
X − λ

−→
A − (1− λ)

−→
B
)
·
(−→
B −

−→
A
)

= 0.

The following generalized kind of circumcenter sequence will be
the focus of this article.

Definition 2 (Pseudo-circumcenter sequence). Let λ1, λ2, . . . ,
λn+2 be nonzero real numbers, where we look at the indices mod-
ulo n + 2 (hence λi = λi+n+2 for every i ∈ Z+ ). We say that a
sequence (Pi)i≥1 of points of Rn is a pseudo-circumcenter sequence
with coefficients λ1, λ2, . . . , λn+2 if for every positive integer k

• Pk+n+2 lies on m(Pi, Pi+1, λi) for k + 1 ≤ i ≤ k + n,
• Pk is different to each of the points Pk+1, Pk+2, . . . , Pk+n for

each k ∈ Z+ , and
• the vectors

−−−−→
PkPk+1,

−−−−−−−→
Pk+1, Pk+2,

−−−−−−−→
Pk+2, Pk+3, . . . ,

−−−−−−−−−→
Pk+n−2Pk+n−1

are linearly independent.

The gist of this definition is that if P1, P2, . . . is defined by the
circumcenters as in the original problem, then Pn, Pn+1, Pn+2, . . .
is a pseudo-circumcenter sequence with λi = 1

2
for all i. We will

formally prove this fact towards the end of the article.

3 Study of pseudo-circumcenter se-
quences

From this point on, let us fix the dimension n ≥ 2 and assume that
P1, P2, . . . is a pseudo-circumcenter sequence with coefficients



136 Arhimede Mathematical Journal

λ1, λ2, . . . , λn+2 . Firstly, recall that the pseudo-circumcenter con-
dition implies that

(−−−−→
Pk+n+2 − λi

−→
Pi − (1− λi)

−−→
Pi+1

)
·
(−−→
Pi+1 −

−→
Pi
)

= 0

for any i, k ∈ Z+ such that k+ 1 ≤ i ≤ k+n. We might rearrange
this equality as

−−−−→
Pk+n+2 ·

(−−→
Pi+1 −

−→
Pi
)

=
(
λi
−→
Pi + (1− λi)

−−→
Pi+1

)
·
(−−→
Pi+1 −

−→
Pi
)
.

Note that as the right hand side of this equation depends solely on
i, we can define

ai :=
(
λi
−→
Pi + (1− λi)

−−→
Pi+1

)
·
(−−→
Pi+1 −

−→
Pi
)
.

Lemma 1. Vectors
−−−−→
PkPk+1 and

−−−−−−−−−→
Pk+n+2Pk+n+3 are parallel.

Proof. We know that for all i ∈ {k + 2, k + 3, . . . , k + n},

−−−−→
Pk+n+2 ·

(−−→
Pi+1 −

−→
Pi
)

= ai =
−−−−→
Pk+n+3 ·

(−−→
Pi+1 −

−→
Pi
)

and therefore
(−−−−→
Pk+n+3 −

−−−−→
Pn+k+2

)
·
(−−→
Pi+1 −

−→
Pi
)

= 0.

This implies that
−−−−−−−−−→
Pn+k+2Pn+k+3 is perpendicular to the vectors

−−−−−−→
Pk+2Pk+3,

−−−−−−−→
Pk+3, Pk+4, . . . ,

−−−−−−−−→
Pk+nPk+n+1.

Let S denote the set of the above n− 1 vectors. We can also prove
that

−−−−→
PkPk+1 is orthogonal to every vector in S . Notice that for

every i ∈ {k + 2, k + 3, . . . , k + n+ 1}, we have that

−→
Pi ·

(−−→
Pk+1 −

−→
Pk
)

= ak.

By subtracting these equalities it follows that for every i ∈ {k +
2, k + 3, . . . , k + n},

(−−→
Pi+1 −

−→
Pi
)
·
(−−→
Pk+1 −

−→
Pk
)

= 0.
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This directly implies that
−−−−→
PkPk+1 is orthogonal to every vector in

S .

By the definition of pseudo-circumcenter sequence, the vectors
of S are linearly independent. Hence as S consists of n − 1
linearly independent vectors, it follows that all vectors −→u such
that −→u ⊥ −→s for all s ∈ S must lie on a single direction. Thus it
follows that

−−−−→
PkPk+1 and

−−−−−−−−−→
Pn+k+2Pn+k+3 are parallel.

Lemma 2. There is a unique nonzero real number r such that
−−−−−−−−−→
Pk+n+2Pk+n+3 = r ·

−−−−→
PkPk+1

for every positive integer k.

Proof. Fix a positive integer k. By lemma 1 there are real numbers
a and b such that

−−−−−−−−−→
Pk+n+2Pk+n+3 = a ·

−−−−→
PkPk+1,

−−−−−−−−−→
Pk+n+3Pk+n+4 = b ·

−−−−−−→
Pk+1Pk+2.

Furthermore, a and b are nonzero since no two consecutive points
of a pseudo-circumcenter sequence can be the same. We are going
to prove that a = b, which implies the lemma. We know that, by
the pseudo-circumcenter condition,
−−→
Pk+2 ·

(−−→
Pk+1 −

−→
Pk
)

= ak =
(
λk
−→
Pk + (1− λk)

−−→
Pk+1

)
·
(−−→
Pk+1 −

−→
Pk
)
.

This equality can be rearranged into

−−→
Pk+2·

(−−→
Pk+1 −

−→
Pk
)

=λk
(−→
Pk−
−−→
Pk+1

)
·
(−−→
Pk+1−

−→
Pk
)
+
−−→
Pk+1 ·

(−−→
Pk+1−

−→
Pk
)

⇐⇒
(−−→
Pk+2 −

−−→
Pk+1

)
·
(−−→
Pk+1 −

−→
Pk
)

= −λk ·
∣∣∣
−−→
Pk+1 −

−→
Pk
∣∣∣
2

⇐⇒ λk =

(−−→
Pk+1 −

−−→
Pk+2

)
·
(−−→
Pk+1 −

−→
Pk
)

∣∣∣
−−→
Pk+1 −

−→
Pk
∣∣∣
2 =

−−−−−−→
Pk+2Pk+1 ·

−−−−→
PkPk+1∣∣∣

−−−−→
PkPk+1

∣∣∣
2 .

Analogously it follows that

λk+n+2 =

−−−−−−−−−→
Pk+n+4Pk+n+3 ·

−−−−−−−−−→
Pk+n+2Pk+n+3∣∣∣

−−−−−−−−−→
Pk+n+2Pk+n+3

∣∣∣
2 .
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Therefore, we have that

−−−−−−→
Pk+2Pk+1 ·

−−−−→
PkPk+1∣∣∣

−−−−→
PkPk+1

∣∣∣
2 = λk = λk+n+2

=

−−−−−−−−−→
Pk+n+4Pk+n+3 ·

−−−−−−−−−→
Pk+n+2Pk+n+3∣∣∣

−−−−−−−−−→
Pk+n+2Pk+n+3

∣∣∣
2

=

(
b ·
−−−−−−→
Pk+2Pk+1

)
·
(
a ·
−−−−→
PkPk+1

)

a2 ·
∣∣∣
−−−−→
PkPk+1

∣∣∣
2

where we used that λk = λk+n+2 by definition. Finally, as λk 6= 0
by the definition of pseudo-circumcenter sequence, we have that
−−−−−−→
Pk+2Pk+1 ·

−−−−→
PkPk+1 6= 0 and

−−−−−−−−−→
Pk+n+4Pk+n+3 ·

−−−−−−−−−→
Pk+n+2Pk+n+3 6= 0.

Therefore the above equality reduces to

1 =
b · a
a2

which instantly gives that a = b.

This is the only point in the article in which we use that the λk
are nonzero. However, it is likely that extending the above proof to
cases where λk = 0 is possible by setting first

−−−−−−−−−→
Pk+n+2Pk+n+3 = a ·

−−−−→
PkPk+1,

−−−−−−−−−→
Pk+n+4Pk+n+5 = b ·

−−−−−−→
Pk+2Pk+3

and later
−−−−−−−−−→
Pk+n+2Pk+n+3 = a ·

−−−−→
PkPk+1,

−−−−−−−−−→
Pk+n+5Pk+n+6 = b ·

−−−−−−→
Pk+3Pk+4

and proving that a = b in both cases, with a method similar to the
proof of lemma 2. However, this is not necessary at all for solving
Goddyn’s original problem, so we might as well overlook this edge
case.

Using lemma 2, the following key result follows readily.
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Theorem 2. There exists a point O ∈ Rn and a nonzero real num-
ber r such that −−−−−→

OPn+k+2 = r ·
−−→
OPk

for every positive integer k.

Proof. Let r be as in lemma 2 and let O be the unique point
such that

−−−−→
OPn+3 = r ·

−−→
OP1 . We will prove by induction on k that

−−−−−→
OPk+n+2 = r ·

−−→
OPk for every positive integer k, starting from k = 1.

Indeed, if
−−−−−→
OPk+n+2 = r ·

−−→
OPk , then

−−−−−→
OPk+n+3 =

−−−−−→
OPk+n+2 +

−−−−−−−−−→
Pk+n+2Pk+n+3

= r ·
−−→
OPk + r ·

−−−−→
PkPk+1 = r · OPk+1

implying the result by induction.

This theorem roughly tells us that any pseudo-circumcenter se-
quence follows a distorted logarithmic spiral that either converges
towards O if |r| < 1, goes away from O if |r| > 1 or stays fixed
if |r| = 1. Figure 1 illustrates the first vertices of a pseudo-
circumcenter sequence in which n = 3 and r ≈ −0.87.

Observe that if (Pi)i≥1 were periodic, then r would be either
1 or −1. This is clear, as if |r| is not 1, then the sequence
Pn+2, P2(n+2), P3(n+2), . . . would contain infinitely many different
points, making impossible that (Pi)i≥1 is periodic.

From now on, suppose that (Pi)i≥1 is periodic with minimal period
d, hence r ∈ {−1, 1}. As r2 = 1, it follows that

−−−−−−→
OPk+2n+4 = r ·

−−−−−→
OPk+n+2 = r2 ·

−−→
OPk =

−−→
OPk

implying that Pk+2n+4 and Pk are the same point, hence (Pi)i≥1 is
periodic with period 2n + 4. Therefore, d must divide 2n + 4. It
is also of note that d ≥ n+ 1. This follows from recalling that Pk
is different from Pk+1, Pk+2, . . . , Pk+n by the definition of pseudo-
circumcenter sequence. However, if d = n + 1, we would have
that n + 1 | 2n + 4, implying that n + 1 | 2, which is impossible
for n ≥ 2. Therefore d ≥ n + 2. From these observations, the
following result follows instantly.
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1

Figure 1: Example of a pseudo-circumcenter sequence for n = 3
(projected onto the paper).

Theorem 3. If a pseudo-circumcenter sequence in n dimensions
is periodic, then its period is either 2n+ 4 or n+ 2.

This is actually the best result we can prove for general pseudo-
circumcenter sequences, as there do exist pseudo-circumcenter
sequences with period n+ 2. For instance, consider the following
construction in n = 2 dimensions:

P1 = (0, 0)

P2 = (1, 0)

P3 =

Ñ
1

2
,

√
3

2

é
P4 =

Ñ
1

2
,

√
3

6

é
(λ1, λ2, λ3, λ4) =

Ç
1

2
,
1

2
,−

1

2
,
3

2

å
.

In this case, P4 is the center of equilateral triangle P1P2P3 . It
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is straightforward to check that the construction is valid and
P5 = P1 . More generally, it is not hard to check that if n = 2
and P1, P2, P3, P4 form an orthocentric system then there exist
λ1, λ2, λ3, λ4 giving a pseudo-circumcenter sequence of period 4.

4 Return to the original problem

Now we return to the kind of sequence proposed in the original
problem. Call a sequence of points P1, P2, P3, · · · ∈ Rn a cir-
cumcenter sequence if it satisfies the conditions in the original
problem, i.e. that Pi is the center of the unique n-sphere through
the distinct points Pi−1, Pi−2, . . . , Pi−n−1 for every positive integer
i ≥ n+ 2.

Lemma 3. Let P1, P2, P3, . . . be a circumcenter sequence. The
sequence (Pi)i≥n+2 is a pseudo-circumcenter sequence with λ1 =
λ2 = · · · = λn+2 = 1

2
.

Proof. First observe that Pk is different from Pk+1, Pk+2, . . . , Pk+n
by definition. On the other hand, notice that if k ≥ n + 2, then∣∣∣
−−→
PkPi

∣∣∣ =
∣∣∣
−−−−→
PkPi+1

∣∣∣ for every i ∈ {k − n − 1, . . . , k − 2}. However,
this equality is equivalent to

∣∣∣
−−→
PkPi

∣∣∣
2

=
∣∣∣
−−−−→
PkPi+1

∣∣∣
2

⇐⇒
−−→
PkPi ·

−−→
PkPi =

−−−−→
PkPi+1 ·

−−−−→
PkPk+1

⇐⇒ (
−→
Pi −

−→
Pk) · (

−→
Pi −

−→
Pk) = (

−−→
Pi+1 −

−→
Pk) · (

−−→
Pi+1 −

−→
Pk)

⇐⇒
−→
Pi ·
−→
Pi − 2

−→
Pi ·
−→
Pk +

−→
Pk ·
−→
Pk =

−−→
Pi+1 ·

−−→
Pi+1 − 2

−−→
Pi+1 ·

−→
Pk +

−→
Pk ·
−→
Pk

⇐⇒
−→
Pi ·
−→
Pi −

−−→
Pi+1 ·

−−→
Pi+1 − 2

−→
Pk ·

(−→
Pi −

−−→
Pi+1

)
= 0

⇐⇒ (Pi + Pi+1 − 2Pk) ·
(−→
Pi −

−−→
Pi+1

)
= 0.

The last equality is equivalent to Pk lying on m(Pi, Pi+1,
1
2
), which

will hold for any positive integer i such that k−n− 1 ≤ i ≤ k− 2.

Finally, we need to check that vectors
−−−−→
PkPk+1,

−−−−−−−→
Pk+1, Pk+2, . . . ,

−−−−−−−−−→
Pk+n−2Pk+n−1
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are linearly independent for every positive integer k. This follows
readily from the fact that there is a unique point equidistant from
Pk, Pk+1, . . . , Pk+n . Recall that for any A ∈ Rn ,

∣∣∣
−−→
APi

∣∣∣ =
∣∣∣
−−→
APj

∣∣∣ ⇐⇒
−→
A ·
−−→
PiPj =

1

2

(−→
Pi +

−→
Pj
)
·
−−→
PiPj.

Therefore, A will be the circumcenter of the n + 1 points Pk,
Pk+1, . . . , Pk+n if and only if

−→
A ·
−−−−→
PiPi+1 =

1

2

(−→
Pi +

−−→
Pi+1

)
·
−−−−→
PiPi+1

for every positive integer i such that k ≤ i ≤ k+ n− 1. This, how-
ever, is nothing else than a system of equations with n variables
(the components of

−→
A ) and over n equations (one for each choice

of i). As this system must have exactly one solution, it follows
that the n coefficient vectors must be linearly independent. As
−−−−→
PkPk+1,

−−−−−−→
Pk+1Pk+2, . . . ,

−−−−−−−−−→
Pk+n−2Pk+n−1 are all among the coefficient

vectors, the result follows.

Therefore by theorem 3 it follows that any periodic circumcen-
ter sequence in n dimensions must have period either n + 2
or 2n + 4. It only remains to prove that no circumcenter se-
quence can have period n + 2. Note that if P1, P2, P3, . . . were
to form a circumcenter sequence with period n + 2, then any
point in {P1, P2, P3, . . . , Pn+2} would be the circumcenter of the
unique sphere going through the other n + 1 points. There-
fore, it follows that distances PiPj are the same for any different
i, j ∈ {1, 2, . . . , n+ 2}.

Lemma 4. There do not exist n+2 different points P1, . . . , Pn+2 ∈
Rn such that distances PiPj with 1 ≤ i < j ≤ n + 2 are all the
same.

Proof. While there are multiple known proofs of this fact available
online, we present one for the sake of completeness. By shifting
and scaling, we can assume without loss of generality that Pn+2 is
the origin, and that PiPj = 1 for all i 6= j . Therefore, we have that
for every a ∈ {1, 2, . . . , n+ 1},

1 = Pn+2Pa =
∣∣∣
−→
Pa
∣∣∣ =⇒ 1 =

−→
Pa ·
−→
Pa.
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Furthermore, if a, b ∈ {1, 2, . . . , n + 1} are different, then since
PaPb = 1 we have that

1 =
∣∣∣
−−→
PaPb

∣∣∣
2

= (
−→
Pa −

−→
Pb) · (

−→
Pa −

−→
Pb)

=
−→
Pa ·
−→
Pa +

−→
Pb ·
−→
Pb − 2

−→
Pa ·
−→
Pb

= 2− 2
−→
Pa ·
−→
Pb

which reduces to
−→
Pa ·
−→
Pb = 1

2
. However, as

−→
P1,
−→
P2, . . . ,

−−→
Pn+1 are

n+ 1 vectors in Rn , they must be linearly dependent. Therefore,
we can write some Pi as a combination of other points (which,
without loss of generality we can assume is Pn+1 ):

−−→
Pn+1 =

n∑

i=1

µi
−→
Pi

for some µ1, µ2, . . . , µn ∈ R not all zero. We will then have that for
any a ∈ {1, 2, . . . , n}

1

2
=
−→
Pa ·
−−→
Pn+1 =

−→
Pa ·

n∑

i=1

µi
−→
Pi =

n∑

i=1

(
µi
−→
Pa ·
−→
Pi
)
.

However, as
−→
Pa ·
−→
Pi = 1

2
for all i 6= a and

−→
Pa ·
−→
Pa = 1, the above

equality reduces to
1

2
=
µa

2
+

n∑

i=1

µi

2

which will hold for every a ∈ {1, 2, . . . , n}. Therefore

µ1 = µ2 = · · · = µn = 1−
n∑

i=1

µi

quickly implying that

µ1 = µ2 = · · · = µn =
1

n+ 1
.
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This, however, leads to a contradiction, as we can compute

−−→
Pn+1 ·

−−→
Pn+1 =

Ñ
n∑

i=1

−→
Pi

n+ 1

é
·

Ñ
n∑

i=1

−→
Pi

n+ 1

é
=

1

(n+ 1)2

(
n∑

i=1

−→
Pi

)
·
(
n∑

i=1

−→
Pi

)

=
1

(n+ 1)2

Ñ
n∑

i=1

−→
Pi ·
−→
Pi + 2

∑

1≤i<j≤n

−→
Pi ·
−→
Pj

é
=

1

(n+ 1)2

(
n+

(
n

2

))
=
n+ 1

2
n(n− 1)

(n+ 1)2

=
n2 + n

2(n+ 1)2
=

n

2(n+ 1)
<

1

2
,

contradicting the fact that
−−→
Pn+1 ·

−−→
Pn+1 = 1.

With this lemma proven, we can discard the option of a circumcen-
ter sequence having period n+ 2, therefore establishing that any
periodic circumcenter sequence must have period 2n+ 4, just as
the problem asked.
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Constrain Inequalities

Mihály Bencze and José Luis Díaz-Barrero

1 Introduction

In [2] the following problem was posed: Let a, b, c be positive real
numbers such that a+ b+ c = 1. Prove that

(ab+ bc+ ca)

Ç
a

b2 + b
+

b

c2 + c
+

c

a2 + a

å
≥

3

4
.

A solution to the preceding proposal and some related results
appeared in [1]. Our aim in this paper is to generalize it and to
give some of its applications.

2 Main results

Applying Cauchy’s inequality, we get the following result.

Theorem 1. Let x and ak, bk, (1 ≤ k ≤ n) be positive real num-
bers. Then, it holds:

(
n∑

k=1

ak

(x+ bk)2

)(
n∑

k=1

ak(x+ bk)

)2

≥
(

n∑

k=1

ak

)3

.

Proof. Setting

~u =

( √
a1

x+ b1
,

√
a2

x+ b2
, . . . ,

√
an

x+ bn

)
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and
~v =

Ä√
a1,
√
a2, . . . ,

√
an
ä

into the CBS inequality, we get
(

n∑

k=1

ak

x+ bk

)2

≤
(

n∑

k=1

ak

)(
n∑

k=1

ak

(x+ bk)2

)
.

On the other hand, setting

~u =

(√
a1

x+ b1
,

√
a2

x+ b2
, . . . ,

√
an

x+ bn

)

and
~v =

(»
a1(x+ b1),

»
a2(x+ b2), . . . ,

»
an(x+ bn)

)

into the CBS inequality again, we obtain
(

n∑

k=1

ak

)2

≤
(

n∑

k=1

ak

x+ bk

)(
n∑

k=1

ak(x+ bk)

)

from which
(

n∑

k=1

ak

x+ bk

)2

≥
(

n∑

k=1

ak

)4/(
n∑

k=1

ak(x+ bk)

)2

follows. Combining the preceding, yields
(

n∑

k=1

ak

)(
n∑

k=1

ak

(x+ bk)2

)
≥
(

n∑

k=1

ak

x+ bk

)2

≥
(

n∑

k=1

ak

)4/(
n∑

k=1

ak(x+ bk)

)2

,

and
(

n∑

k=1

ak

)(
n∑

k=1

ak

(x+ bk)2

)
≥
(

n∑

k=1

ak

)4/(
n∑

k=1

ak(x+ bk)

)2

holds. After dividing by
n∑

k=1

ak and rearranging terms, the state-

ment follows.

An inequality that can be obtain immediately from the preceding
result is given in
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Corollary 1. Let bk (1 ≤ k ≤ n) be positive real numbers. Then,
(

1

n

n∑

k=1

k

(1 + bk)2

)(
1

n

n∑

k=1

k(1 + bk)

)2

≥
Ç
n+ 1

2

å3

.

Proof. Set ak = k (1 ≤ k ≤ n) and x = 1 in Theorem 1.

Putting
n∑

k=1

ak = 1 and using the preceding, we get

Corollary 2. Let ak, bk (1 ≤ k ≤ n) be positive real numbers such
that a1 + a2 + . . .+ an = 1. Then,

(
n∑

k=1

ak

(x+ bk)2

)(
n∑

k=1

ak(x+ bk)

)2

≥ 1.

Integrating the above results, we obtain

Theorem 2. Let 0 ≤ y < z and ak, bk, (1 ≤ k ≤ n) be positive
real numbers. Then,

(
n∑

k=1

ak

)(
n∑

k=1

ak

(y + bk)(z + bk)

)

≥
n∑

k=1

a2
k

(y + bk)(z + bk)
+

1

z − y
log

∏

1≤i<j≤n

(
(y + bj)(z + bi)

(y + bi)(z + bj)

) 2aiaj
bj−bi

≥

(
n∑

k=1

ak

)4

(
y

n∑

k=1

ak +
n∑

k=1

akbk

)(
z

n∑

k=1

ak +
n∑

k=1

akbk

)

Proof. From the preceding, we have
∫ z

y

(
n∑

k=1

ak

)(
n∑

k=1

ak

(x+ bk)2

)
dx ≥

∫ z

y

(
n∑

k=1

ak

x+ bk

)2

dx

≥
∫ z

y

(
n∑

k=1

ak

)4

(
n∑

k=1

ak(x+ bk)

)2 dx,
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and with a little straightforward algebra, the statement follows
after dividing by z − y .

Corollary 3. Let 0 ≤ y < z and ak, bk (1 ≤ k ≤ n) be positive
real numbers. Then, there exists c ∈ (y, z) such that

(
n∑

k=1

ak

)(
n∑

k=1

ak

(y + bk)(z + bk)

)
≥
(

n∑

k=1

ak

c+ bk

)2

≥

(
n∑

k=1

ak

)4

(
y

n∑

k=1

ak +
n∑

k=1

akbk

)(
z

n∑

k=1

ak +
n∑

k=1

akbk

)

Proof. Applying Lagrange’s Mean Value Theorem to the function

f(x) =
∫ x

0

(
n∑

k=1

ak

t+ bk

)2

dt

yields

∫ z

y

(
n∑

k=1

ak

t+ bk

)2

dt = f(z)− f(y) = (z − y)

(
n∑

k=1

ak

c+ bk

)2

.

Putting this in Theorem 2 the statement follows and this completes
the proof.

Applying again Theorem 2 we get the following inequalities.

Corollary 4. Let ak, bk, (1 ≤ k ≤ n) be positive real numbers such
that a1 + a2 + . . .+ an = 1. Then,

n∑

k=1

ak

bk(1 + bk)
≥

n∑

k=1

a2
k

bk(1 + bk)
+ log

∏

1≤i<j≤n

(
bj(1 + bi)

bi(1 + bj)

) 2aiaj
bj−bi

≥
1

(
n∑

k=1

akbk

)(
1 +

n∑

k=1

akbk

) .
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Corollary 5. Let ak (1 ≤ k ≤ n) be positive real numbers such
that a1 + a2 + . . .+ an = 1. Then

∑

cyc

a1

a2(1 + a2)
≥
∑

cyc

a2
1

a2(1 + a2)
+log

∏

1≤i<j≤n

(
aj+1(1 + ai+1)

ai+1(1 + aj+1)

) 2aiaj
aj+1−ai+1

≥
1

(∑

cyc

a1a2

)(
1 +

∑

cyc

a1a2

) .

Proof. Setting bk = ak+1 (1 ≤ k ≤ n) and an+1 = a1 into the
preceding corollary the statement follows.

Notice that this result is a generalization and refinement of the
inequality posed in [2]. Indeed, for n = 3, we have

Corollary 6. Let a, b, c be positive numbers of sum one. Then,

a

b(1 + b)
+

b

c(1 + c)
+

c

a(1 + a)
≥

a2

b(1 + b)
+

b2

c(1 + c)
+

c2

a(1 + a)

+ log

Ñ(
a(1 + c)

c(1 + a)

) 2bc
a−c

(
b(1 + a)

a(1 + b)

) 2ca
b−a

(
c(1 + b)

b(1 + c)

) 2ab
c−b

é
≥

9

4
.

Proof. Taking into account that for all positive numbers a, b, c
with sum one is ab+ bc+ ca ≤ 1

3
(a+ b+ c)2 ≤ 1

3
and corollary 5,

we get

a

b(1 + b)
+

b

c(1 + c)
+

c

a(1 + a)
≥

a2

b(1 + b)
+

b2

c(1 + c)
+

c2

a(1 + a)

+ log

Ñ(
a(1 + c)

c(1 + a)

) 2bc
a−c

(
b(1 + a)

a(1 + b)

) 2ca
b−a

(
c(1 + b)

b(1 + c)

) 2ab
c−b

é
≥

1

(ab+ bc+ ca)(1 + ab+ bc+ ca)
≥

9

4
.
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If we leave the (ab+ bc+ ca) factor as is, we recover the inequality
in [2].

Combining the inequality posed by Dospinescu in [2] and the
inequality posed in [1] by Janous, namely, if x, y, z are positive
reals such that x+ y + z = 1, then

(xy + yz + zx)

Ç
x

1 + y2
+

y

1 + z2
+

z

1 + x2

å
≤

3

4
,

the following application is obtained.

Problem 1. Let a, b, c be positive real numbers. Prove that

∑

cyc

a

b(a+ 2b+ c)
≥

3(a+ b+ c)

4(ab+ bc+ ca)
≥
∑

cyc

a

b2 + (a+ b+ c)2
.

Solution. Putting x = a
a+b+c

, y = b
a+b+c

and x = c
a+b+c

into

(∑

cyc

xy

)(∑

cyc

x

y(1 + y)

)
≥

3

4
≥
(∑

cyc

xy

)(∑

cyc

x

1 + y2

)

the statement follows.
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Derivative Polynomials for
Trigonometric and

Hyperbolic Functions

Joe Santmyer

Abstract

This note was motivated by properties discussed in [1] and [3]
for the coefficients of what are referred to as derivative polyno-
mials. The note presents a different set of properties for the
coefficients of these kind of polynomials.

1 Introduction

As the author mentions in [3] sometimes problems naturally occur
in pairs. Consider the set of function pairs

P = {(sec, tan), (csc, cot), (sech, tanh), (csch, coth)}.

Let f (n) be the nth derivative of f where n = 0 is f itself. For each
(f, g) ∈ P it is not difficult to see that f (n)(x) = f(x)Qn(u) where
u = g(x) and

Qn(u) =
n∑

k=0

Sn,ku
k

is a polynomial. The polynomials Qn are associated with what are
called derivative polynomials in [3].
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2 Coefficient Properties

Consider the coefficients Sn,k . By the way Qn is defined Sn,k = 0
if k < 0 or k > n. Otherwise, if 0 ≤ k ≤ n the following properties
for Sn,k will be established.

a. If n and k have different parity, then Sn,k = 0.
b. If (f, g) = (sec, tan), then Sn,k = kSn−1,k−1 + (k+ 1)Sn−1,k+1 .
c. If (f, g) = (csc, cot), then Sn,k = −[kSn−1,k−1+(k+1)Sn−1,k+1].
d. If (f, g) = (sech, tanh) or (f, g) = (csch, coth), then Sn,k =
−[kSn−1,k−1 − (k + 1)Sn−1,k+1].

For b and c it will be shown that Sn,0 is the sequence 1, 1, 5, 61,
1385, 50521, . . . of Euler numbers A000364 in OEIS. For d it will
be shown that Sn,0 is the sequence 1,−1, 5,−61, 1385,−50521, . . .
of alternating Euler numbers A028296 in OEIS.

Technology is used to produce a 10 × 9 table of values for the
numbers Sn,k where 0 ≤ n ≤ 9 and 0 ≤ k ≤ 8 in part d.

3 Justifying the Properties

Part a is relatively easy to prove and is left to the reader. Consider
part b. Since f2 − g2 = 1 and (f ′, g′) = (fg, f2) we have

f (n−1) = fQn−1

f (n) = fQn

f (n) = f ′Qn−1 + fQ′n−1

fQn = fgQn−1 + fQ′n−1

fQn = f [gQn−1 +Q′n−1]

Qn = gQn−1 +Q′n−1

https://oeis.org/
https://oeis.org/
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n∑

k=0

Sn,kg
k = g

n−1∑

k=0

Sn−1,kg
k +

n−1∑

k=1

kSn−1,kg
k−1g′

= g
n−1∑

k=0

Sn−1,kg
k +

n−1∑

k=1

kSn−1,kg
k−1f2

=
n−1∑

k=0

Sn−1,kg
k+1 +

n−1∑

k=1

kSn−1,kg
k−1(1 + g2)

=
n−1∑

k=0

Sn−1,kg
k+1 +

n−1∑

k=1

kSn−1,kg
k−1 +

n−1∑

k=1

kSn−1,kg
k+1.

It is easy to see that

n−1∑

k=0

Sn−1,kg
k+1 =

n∑

k=1

Sn−1,k−1g
k

n−1∑

k=1

kSn−1,kg
k−1 =

n−2∑

k=0

(k + 1)Sn−1,k+1g
k

n−1∑

k=1

kSn−1,kg
k+1 =

n∑

k=2

(k − 1)Sn−1,k−1g
k.

Consequently

n∑

k=0

Sn,kg
k =

n∑

k=1

Sn−1,k−1g
k+

n−2∑

k=0

(k+1)Sn−1,k+1g
k+

n∑

k=2

(k−1)Sn−1,k−1g
k.

For 2 ≤ k ≤ n− 2 we have

Sn,kg
k = Sn−1,k−1g

k + (k + 1)Sn−1,k+1g
k + (k − 1)Sn−1,k−1g

k

Sn,k = Sn−1,k−1 + (k + 1)Sn−1,k+1 + (k − 1)Sn−1,k−1

= kSn−1,k−1 + (k + 1)Sn−1,k+1.

If k = 0 the left hand side (LHS) is Sn,0 . The right hand side (RHS)
is Sn−1,1 = (k + 1)Sn−1,k+1 . Also, kSn−1,k−1 = 0 · 0 = 0. Hence,
Sn,k = kSn−1,k−1 + (k + 1)Sn−1,k+1 .

If k = 1 the LHS is Sn,kg = Sn,1g and the RHS is [Sn−1,0 +
2Sn−1,2]g = [kSn−1,k−1+(k+1)Sn−1,k+1]g . Hence, Sn,k = kSn−1,k−1+
(k + 1)Sn−1,k+1 .
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If k = n − 1 the LHS is Sn,kg
k = Sn,n−1g

n−1 and the RHS
is [Sn−1,n−2 + (n − 2)Sn−1,n−2]g

n−1 = (n − 1)Sn−1,n−2g
n−1 =

kSn−1,k−1g
n−1 . Since Sn−1,k+1 = Sn−1,n = 0 the RHS is [kSn−1,k−1+

(k + 1)Sn−1,k+1]g
n−1 . Hence, Sn,k = kSn−1,k−1 + (k + 1)Sn−1,k+1 .

If k = n the LHS is Sn,kgk = Sn,ng
n and the RHS is [Sn−1,n−1+(n−

1)Sn−1,n−1]g
n = nSn−1,n−1g

n = kSn−1,k−1g
n . Since Sn−1,n+1 =

Sn−1,k+1 = 0 the RHS is [kSn−1,k−1 + (k + 1)Sn−1,k+1]g
n . Hence,

Sn,k = kSn−1,k−1 + (k + 1)Sn−1,k+1 .

Summarizing, for 0 ≤ k ≤ n we have Sn,k = kSn−1,k−1 + (k +
1)Sn−1,k+1 . This establishes the recurrence formula in part b.

Since (f, g) = (sec, tan) we have

f (n)(0) = f(0)Qn(g(0))

sec(n)(0) = sec(0)Qn(tan(0))

sec(n)(0) = Sn,0.

The Taylor series is

sec(x) =
∞∑

n=0

sec(n)(0)

n!
xn

=
∞∑

n=0

Sn,0

n!
xn.

Hence, by 20.25 on p 111 in [4] we know that Sn,0 is the sequence
of Euler numbers.

Consider part c. It is easy to establish Qn(−u) = (−1)nQn(u) and
is left to the reader. Now

csc(n)(x) = csc(x)Pn(cot(x))

where Pn(cot(x)) =
n∑
k=0

Rn,kcot
k(x). Since tan

Ä
x+ π

2

ä
= −cot(x)

and sec
Ä
x+ π

2

ä
= −csc(x) from sec(n)(x) = sec(x)Qn(tan(x))
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and Qn(−u) = (−1)nQn(u) it follows that

−csc(n)(x) = sec(n)
Å
x+

π

2

ã
−csc(n)(x) = sec

Å
x+

π

2

ã
Qn

Å
tan

Å
x+

π

2

ãã
−csc(n)(x) = −csc(x)Qn(−cot(x))

csc(n)(x) = csc(x)(−1)nQn(cot(x))

csc(n)(x) = csc(x)
n∑

k=0

(−1)nSn,kcot
k(x).

Hence, Rn,k = (−1)nSn,k . Consequently

Rn,k = (−1)nSn,k

= (−1)n[kSn−1,k−1 + (k + 1)Sn−1,k+1]

= −[k(−1)n−1Sn−1,k−1 + (k + 1)(−1)n−1Sn−1,k+1]

= −[kRn−1,k−1 + (k + 1)Rn−1,k+1]

and the coefficients satisfy the desired recurrence formula. Since
Rn,k = (−1)nSn,k we have the same initial conditions Sn,0 as in
part b.

Part d can be justified by an argument similar to the one used in
part b. If (f, g) = (sech, tanh) then

f (n)(0) = f(0)Qn(g(0))

sech(n)(0) = sech(0)Qn(tanh(0))

sech(n)(0) = Sn,0.

The Taylor series is

sech(x) =
∞∑

n=0

sech(n)(0)

n!
xn

=
∞∑

n=0

Sn,0

n!
xn.

Hence, by 20.37 on p 112 in [4] we know that Sn,0 is the sequence
of alternating Euler numbers.
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To show that the recurrence formula also holds for (csch, coth) use
tanh

Ä
x+ π

2
i
ä

= coth(x) and sech
Ä
x+ π

2
i
ä

= −i csch(x). From
sech(n)(x) = sech(x)Qn(tanh(x)) we get

−i csch(n)(x) = sech(n)
Å
x+

π

2
i
ã

= sech
Å
x+

π

2
i
ã
Qn

Å
tanh

Å
x+

π

2
i
ãã

= −icsch(x)Qn(coth(x))

csch(n)(x) = csch(x)Qn(coth(x)).

Hence, the same recurrence holds for (csch, coth) with the same
initial conditions for Sn,0 .

A python program produced table 1 which contains values Sn,k
for part d.

k
n 0 1 2 3 4 5 6 7 8
0 1
1 0 −1
2 −1 0 2
3 0 5 0 −6
4 5 0 −28 0 24
5 0 −61 0 180 0 −120
6 −61 0 662 0 −1320 0 720
7 0 1385 0 −7266 0 10920 0 −5040
8 1385 0 −24568 0 83664 0 −100800 0
9 0 −50521 0 408360 0 −1023120 0 1028160 0

Table 1: Values Sn,k for part d

4 Final Remark

Here is a challenge left for the reader to resolve. A polynomial
with real coefficients is said to be hyperbolic if all of its roots are
real. Mathematica shows that the polynomials Qn in property d
mentioned above are hyperbolic for 1 ≤ n ≤ 9. Prove or disprove:
for n ≥ 1 the polynomials Qn are hyperbolic. A technique used in
[2] to show that polynomials whose coefficents are Stirling numbers
of the second kind are hyperbolic might help. The author was
unable to prove or disprove this observation.
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Problems
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical problems. Proposals
are always welcome. Please observe the following guidelines when
submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on
separate sheets, each indicating the name and address of the
sender. Drawings must be suitable for reproduction.

2. Proposals should be accompanied by solutions. An asterisk (*)
indicates that neither the proposer nor the editor has supplied
a solution.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

The section is divided into four subsections: Elementary Problems,
Easy–Medium High School Problems, Medium–Hard High School
Problems, and Advanced Problems mainly for undergraduates.
Proposals that appeared in Math Contests around the world and
most appropriate for Math Olympiads training are always welcome.
The source of these proposals will appear when the solutions are
published.

Solutions to the problems stated in this issue should be posted
before

April 30, 2024
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Elementary Problems

E–119. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find all the prime numbers p and integers n such that n4 + n2 +
p = 2452.

E–120. Proposed by Michel Bataille, Rouen, France. Let triangle
ABC (with no right angle) be inscribed in a circle with centre
O and let A′ be diametrically opposite to A. The perpendicular
to AC through A intersects the line A′B at B′ . If H is the
orthogonal projection of A onto the line OB′ , prove that B,H,O,C
are concyclic.

E–121. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find the smallest side of a triangle ABC knowing that the medians
drawn by vertices A and B are perpendicular.

E–122. Proposed by Toyesh Prakash Sharma, Agra College, Agra,
India. If a, b, x, y are positive numbers then show that

logab(axby) logab

Ä
a1/ xb1/y

ä
≥ 1.

E–123. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let F = {A1, A2, . . . , An} be a collection of subsets of the set
S = {1, 2, . . . , n} satisfying the following conditions:

• Any two distinct sets from F have exactly one element in
common,

• each element of S is contained in exactly k of the sets in F .

Can n be equal to 2024?

E–124. Proposed by Mihaela Berindeanu, Bucharest, Romania.
If x, y, z > 1 and xyz = 2, then show that

(log2 x)2 + log2 y

log2 yz
+

(log2 y)2 + log2 z

log2 zx
+

(log2 z)2 + log2 x

log2 xy
≥ 2.
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Easy–Medium Problems

EM–119. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Find all real solutions of the following the system of equations

z + log
(
x+

»
x2 + 1

)
= y,

x+ log
(
y +

»
y2 + 1

)
= z,

y + log
(
z +

»
z2 + 1

)
= x.

EM–120. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let ABC be an equilateral triangle with P , an arbitrary point on
side BC and X , the midpoint of segment AP . If BX∩AC = {M}
and CX ∩AB = {N} show that the distance from the centroid of
triangle ABC to MN does not depend on the choice of point P .

EM–121. Proposed by Todor Zaharinov, Sofia, Bulgaria. Find all
possible values of the positive integers x > 1, y, z so that

x+ 1

x− 1
+
y − 1

y + 1
=
z2 + 1

z
.

EM–122. Proposed by Miguel Amengual Covas, Cala Figuera,
Mallorca, Spain.

1. Prove that every tetrahedron can be cut by a plane so that a
parallelogram results in the section.

2. If the intersection of a regular tetrahedron and a plane is a
rhombus, prove that the rhombus must be a square.

EM–123. Proposed by Alexandru Benescu, Romania. Let ABC
be a triangle, H its orthocenter and ΓA , ΓB , ΓC the circumscribed
circles of 4BHC , 4AHC , 4AHB respectively. Let D , E and
F be points such that DE is tangent to ΓA and ΓB , EF is tangent
to ΓB and ΓC , and FD is tangent to ΓC and ΓA , such that all 3
circles ΓA , ΓB and C lie inside 4DEF . Prove that lines AD , BE
and CF are concurrent.
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EM–124. Proposed by Goran Conar, Varaždin, Croatia. Let b >
a > 1 and x1, x2, . . . , xn be positive real numbers such that x1 +
x2 + . . .+ xn = 1. Prove that

ax1

ax1 + b
+

ax2

ax2 + b
+ . . .+

axn

axn + b
≥

n n
√
a

b+ n
√
a

.
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Medium–Hard Problems

MH–119. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
ABC be a scalene triangle with incenter I and centroid G. Let Ma

be the midpoint of BC , such that BI and IMa are perpendicular.
Prove that IG is perpendicular to side line AB .

MH–120. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let x, y, z be positive real numbers whose sum is 3. Find the
minimum value of

(x4 + y4 + z4)

(x2 + y2 + z2)(x3 + y3 + z3)
.

MH–121. Proposed by Alexandru Benescu, Romania. Let n be a
positive integer. We consider a diamond-shaped board with n rows
and n columns as in the figure below. Let dn be the maximum
number of queens that can be placed on the board, so that there are
no two of them to attack each other (on row, column or diagonals).
Find the minimum value of m such that m− dm > 2, being dk an
odd positive integer for all k ≤ m.

MH–122. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. In
an euclidian plane a set of 2024 points are given in such a way
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that the distance between every two of these points is irrational.
Will it be possible for every three points of the set to form a non-
degenerate triangle with rational area?

MH–123. Proposed by Michel Bataille, Rouen, France. Let T
denote the interior of an equilateral triangle ABC with side s. If
P ∈ T , let a = PA, b = PB , c = PC , α = inf{(a+ b+ c)2 : P ∈
T } and β = sup{a2 + b2 + c2 + ab+ bc+ ca : P ∈ T }. Prove that
α = 3s2 = β .

MH–124. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let n be a positive integer. Prove that

9 + 2
n∑

k=1





Lk+1

log

Ç
1 +

Lk+1

Lk

å < 4Ln+1 + 5Ln,

where Ln is the nth Lucas number defined by L1 = 1, L2 = 3 and
Ln = Ln−1 + Ln−2 for all n ≥ 3.
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Advanced Problems

A–119. Proposed by Vasile Mircea Popa, Affiliate Professor, "Lu-
cian Blaga" University of Sibiu, Romania. Calculate the integral

∫ ∞

0

√
x arctan(x) ln2(x)

x3 + x
√
x+ 1

dx.

A–120. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let m,n
be positive integers, such that

a =
(m+ 3)n + 1

4m

is an integer. Prove that 3 divides a+ 2n+1 .

A–121. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Solve the equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x+7
5(x+2)

x+11
7(x+4)

x+15
9(x+6)

. . . x+4n+3
(2n+3)(x+2n)

1
5

1
7

1
9

. . . 1
2n+3

1
7

1
9

1
11

. . . 1
2n+5

...
...

...
. . .

...

1
2n+1

1
2n+3

1
2n+5

. . . 1
4n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

A–122. Proposed by Óscar Rivero Salgado, Santiago de Com-
postela, Spain and José Luis Díaz-Barrero, Barcelona, Spain. Let
n ≥ 1 be an integer. Compute

lim
n→∞

Ä
n+1

2

ä
2n−1

n∑

k=0

k + 4

(k + 1)(k + 2)(k + 3)

(
n

k

)
.

A–123. Proposed by Michel Bataille, Rouen, France. Let m and
n be nonnegative integers. Prove that
n∑

k=0

(
m+ k

k

)(
m+ n+ 1

n− k

)
−

m∑

k=0

(−1)k2k+n+1

(
m+ n+ 1

m− k

)
= (−1)m+1.
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A–124. Proposed by José Luis Díaz Barrero, Barcelona, Spain
and Mihály Bencze, Braşov, Romnia. For each integer n ≥ 0 let
an = (n2 + n+ 1) 2n . Given the power series

f(x) =
∑

n≥0

anx
n,

show that there is a relation of the form an + pan+1 + qan+2 +
ran+3 = 0, in which p, q, r are constants independent of n. Find
these constants and the sum of the power series.
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Mathlessons
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical notes and lessons
with material useful to solve mathematical problems.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Inequalities involving
differences of means

Vasile Mircea Popa

1 Introduction

Within the field of algebraic inequalities involving differences of
means can be found in [1, 3, 2, 4]. These inequalities are in-
teresting and their proofs are not easy or immediate. In this
mathematical note we state and prove three inequalities including
differences of means.

2 An inequality including arithmetic
and geometric means

Below we state and prove our first result.

Theorem 1. If a, b, c ≥ 1, then

a+ b+ c

3
− 3
√
abc ≥

1

3

Ç
1

a
+

1

b
+

1

c

å
− 3

√
1

abc
.

Proof. Without loss of generality, we may assume that a ≥ b ≥
c ≥ 1 and we write inequality claimed in the form E(a, b, c) ≥ 0
where

E(a, b, c) = a+ b+ c− 3
3
√
abc−

Ç
1

a
+

1

b
+

1

c

å
+

3
3
√
abc

.
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Next, we will prove that E(a, b, c) ≥ E(a, x, x) ≥ 0, where

E(a, x, x) = a+ 2x− 3
3
√
ax2 −

Ç
1

a
+

2

x

å
+

3
3
√
ax2

and x =
√
bc ≤ a in several steps.

a) First, we will prove that E(a, b, c) ≥ E(a, x, x). To do that we
write the inequality as follows:

A−B ≥ C −D,

where

A = a+ b+ c− (a+ 2x) = b+ c− 2x =
(√
b−
√
c
)2

,

B = 3
3
√
abc− 3

3
√
ax2 = 0,

C =
1

a
+

1

b
+

1

c
−
Ç

1

a
+

2

x

å
=

1

b
+

1

c
−

2

x
=

(√
b−
√
c
)2

x2
,

and
D =

3
3
√
abc
−

3
3
√
ax2

= 0.

So, to prove the inequality E(a, b, c) ≥ E(a, x, x) it will be
sufficient to prove that

(√
b−
√
c
)2
≥

(√
b−
√
c
)2

x2
.

Indeed, for b = c we have case of equality. For b 6= c it

remains to show that 1 ≥
1

x2
, which is obviously true. Thus,

the inequality E(a, b, c) ≥ E(a, x, x) is proven.
b) Now, we will prove that E(a, x, x) ≥ 0. We have to show that

a+ 2x− 3
3
√
ax2 ≥

1

a
+

2

x
−

3
3
√
ax2

.

With the substitutions: z = 3
√
a, y = 3

√
x, z ≥ y ≥ 1 the

inequality can be written successively as

z3 + 2y3 − 3zy2 ≥
1

z3
+

2

y3
−

3

zy2
,
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z3 + 2y3 − 3zy2 ≥
y3 + 2z3 − 3z2y

z3y3
,

(z − y)2(2y + z) ≥
(z − y)2(y + 2z)

z3y3
.

It remains to show that:

2y + z ≥
y + 2z

z3y3
, or z3y3(2y + z) ≥ y + 2z.

Since, z3y3 ≥ zy , it suffices to prove that zy(2y + z) ≥ y+2z .
But, zy(2y + z)−y−2z = 2y2z+yz2−y−2z = 2z(y2 − 1)+
y(z2 − 1) ≥ 0.

Thus, the inequality E(a, x, x) ≥ 0 is proved and the inequality in
the statement E(a, b, c) ≥ 0 is also proven.

3 An inequality including geome-
tric and harmonic means

Our second result is presented in

Theorem 2. If a, b, c ≥ 1, then

3
√
abc−

3
1
a

+ 1
b

+ 1
c

≥ 3

√
1

abc
−

3

a+ b+ c
.

Proof. WLOG we may assume a ≥ b ≥ c ≥ 1. We write the
inequality in the form E(a, b, c) ≥ 0, where

E(a, b, c) =
3
√
abc−

3
1
a

+ 1
b

+ 1
c

−
1

3
√
abc

+
3

a+ b+ c
.

We will prove that E(a, b, c) ≥ E(a, x, x) ≥ 0, where

E(a, x, x) =
3
√
ax2 −

3
1
a

+ 2
x

−
1

3
√
ax2

+
3

a+ 2x

and x =
√
bc ≤ a in the following steps:
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a) We begin by proving that E(a, b, c) ≥ E(a, x, x). Indeed, this
inequality can be written as

A−B ≥ C −D,

where
A =

3
√
abc− 3

√
ax2 = 0,

B =
3

1
a

+ 1
b

+ 1
c

−
3

1
a

+ 2
x

; B = −
3
(√
b−
√
c
)2

x2
Ä
1
a

+ 1
b

+ 1
c

äÄ
1
a

+ 2
x

ä
C =

1
3
√
abc
−

1
3
√
ax2

= 0

D =
3

a+ b+ c
−

3

a+ 2x
; D = −

3
(√
b−
√
c
)2

(a+ b+ c)(a+ 2x)

So, to prove the inequality E(a, b, c) ≥ E(a, x, x) we have to
prove that:

3
(√
b−
√
c
)2

x2
Ä
1
a

+ 1
b

+ 1
c

äÄ
1
a

+ 2
x

ä ≥ 3
(√
b−
√
c
)2

(a+ b+ c)(a+ 2x)

For b = c this relationship is true (case of equality).
For b 6= c it remain to show that:

(a+ b+ c)
(
a+ 2

√
bc
)
≥
Ç

1

a
+

1

b
+

1

c

åÇ
bc

a
+ 2
√
bc

å
This inequality is true. We compare the corresponding terms
in the two members.
Thus, the inequality E(a, b, c) ≥ E(a, x, x) is proved.

b) Now, we will prove the inequality: E(a, x, x) ≥ 0.
We have to prove that:

3
√
ax2 −

3
1
a

+ 2
x

≥
1

3
√
ax2
−

3

a+ 2x

With the substitutions: z = 3
√
a, y = 3

√
x, z ≥ y ≥ 1, the

inequality is written successively:

zy2 −
3

1
z3

+ 2
y3

≥
1

zy2
−

3

z3 + 2y3
;
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zy2(2z3 + y3 − 3z2y)

2z3 + y3
≥
z3 + 2y3 − 3zy2

zy2(z3 + 2y3)
;

zy2(z − y)2(2z + y)

2z3 + y3
≥

(z − y)2(z + 2y)

zy2(z3 + 2y3)
.

It remains to show that:

zy2(2z + y)

2z3 + y3
≥

z + 2y

zy2(z3 + 2y3)
,

or, equivalently:

z2y4(2z + y)
Ä
z3 + 2y3

ä
≥ (z + 2y)

Ä
2z3 + y3

ä
.

Because:
z2y4 ≥ z; 2z + y ≥ z + 2y,

it suffices to prove that:

z
Ä
z3 + 2y3

ä
≥ 2z3 + y3.

We have:

z
Ä
z3 + 2y3

ä
− 2z3 − y3 = z4 + (2z − 1)y3 − 2z3 ≥

≥ z4 + (2z − 1)− 2z3 = (z + 1)(z − 1)3 ≥ 0

Thus, the inequality E(a, x, x) ≥ 0 is proved.

So, we proved the inequality in the statement: E(a, b, c) ≥ 0.

4 An Inequality including quadratic
and arithmetic means

Our third results is given in the following

Theorem 3. If a, b, c ≥ 1, then

√
a2 + b2 + c2

3
−
a+ b+ c

3
≥

Ã
1
a2 + 1

b2
+ 1

c2

3
−

1
a

+ 1
b

+ 1
c

3
.
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Proof. Assume, without loss of generality, that c ≥ b ≥ a ≥ 1. We
write inequality in the form: E(a, b, c) ≥ 0, where

E(a, b, c) =
»

3(a2 + b2 + c2)− (a+ b+ c)

−
√

3

Ç
1

a2
+

1

b2
+

1

c2

å
+

Ç
1

a
+

1

b
+

1

c

å
.

We will prove that E(a, b, c) ≥ E(a, x, x) ≥ 0, where

E(a, x, x) =
»

3(a2 + 2x2)− (a+ 2x)−
√

3

Ç
1

a2
+

2

x2

å
+

Ç
1

a
+

2

x

å
and x =

√
bc ≥ a in the following steps:

a) We will prove the inequality: E(a, b, c) ≥ E(a, x, x). This
inequality can be written as follows

A−B ≥ C −D,

where
A =

»
3(a2 + b2 + c2)−

»
3(a2 + 2x2)

=
3(b− c)2»

3(a2 + b2 + c2) +
»

3(a2 + 2x2)

and

A ≥
3(b− c)2»

3(x2 + b2 + c2) + 3x
.

B = a+ b+ c− (a+ 2x) = b+ c− 2x =
(√
b−
√
c
)2

.

C =

√
3

Ç
1

a2
+

1

b2
+

1

c2

å
−
√

3

Ç
1

a2
+

2

x2

å
=

3(b− c)2

x4
(√

3
Ä

1
a2 + 1

b2
+ 1

c2

ä
+
√

3
Ä

1
a2 + 2

x2

ä)
and

C ≤
3(b− c)2

x4
(√

3
Ä

1
x2 + 1

b2
+ 1

c2

ä
+ 3

x

) =
3(b− c)2

x2
(»

3(x2 + b2 + c2) + 3x
) .
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D =
1

a
+

1

b
+

1

c
−
Ç

1

a
+

2

x

å
=

1

b
+

1

c
−

2

x
=

(√
b−
√
c
)2

x2

To prove the inequality E(a, b, c) ≥ E(a, x, x) it is sufficient
to show that

3(b− c)2»
3(x2 + b2 + c2) + 3x

−
(√
b−
√
c
)2

≥
3(b− c)2

x2
(»

3(x2 + b2 + c2) + 3x
) −

(√
b−
√
c
)2

x2

or
(√
b−
√
c
)2
Ö

3
(√
b+
√
c
)2»

3(x2 + b2 + c2) + 3x
− 1

è
≥
(√
b−
√
c
)2
Ö

3
(√
b+
√
c
)2

x
(»

3(x2 + b2 + c2) + 3x
) −

1

x2

è
For b = c this relationship holds (equality case). For b 6= c it
remains to show that

3
(√
b+
√
c
)2»

3(x2 + b2 + c2) + 3x

Ç
1−

1

x2

å
≥ 1−

1

x2

or
3
(√
b+
√
c
)2
≥
»

3(x2 + b2 + c2) + 3x,

3
(√
b+
√
c
)2
≥
»

3(bc+ b2 + c2) + 3
√
bc.

Let us denote:

y =
b

c
, 0 < y ≤ 1.

The previous inequality may be written in the equivalent form

3(
√
y + 1)

2 ≥
»

3(y + y2 + 1) + 3
√
y
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But, we have for any y , 0 < y ≤ 1 that

3
Ä
y + y2 + 1

ä
≤
Ç

6

5
y +

9

5

å2

.

Indeed, we calculateÇ
6

5
y +

9

5

å2

− 3
Ä
y + y2 + 1

ä
=

3

25
(1− y)(13y + 2) ≥ 0.

So, it is enough to prove the inequality

3(
√
y + 1)

2 ≥
6

5
y +

9

5
+ 3
√
y

or
5(
√
y + 1)

2 ≥ 2y + 3 + 5
√
y

5(
√
y + 1)

2 − 2y − 3− 5
√
y = 3y + 5

√
y + 2 ≥ 0,

then, the inequality E(a, b, c) ≥ E(a, x, x) is proved.

b) Now, we will prove the inequality E(a, x, x) ≥ 0. We have to
show that»

3(a2 + 2x2)− (a+ 2x) ≥
√

3

Ç
1

a2
+

2

x2

å
−
Ç

1

a
+

2

x

å
.

The inequality is successively written in the following equiva-
lent forms

3(a2 + 2x2)− (a+ 2x)2»
3(a2 + 2x2) + a+ 2x

≥
3
Ä

1
a2 + 2

x2

ä
−
Ä
1
a

+ 2
x

ä2
√

3
Ä

1
a2 + 2

x2

ä
+
Ä
1
a

+ 2
x

ä
(a− x)2»

3(a2 + 2x2) + a+ 2x
≥

(a− x)2

a2x2
(√

3
Ä

1
a2 + 2

x2

ä
+
Ä
1
a

+ 2
x

ä)
(a− x)2»

3(a2 + 2x2) + a+ 2x
≥

(a− x)2»
3(a2x4 + 2a4x2) + (ax2 + 2a2x)
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The last inequality holds because

a2x4+2a4x2 ≥ a2+2x2, equivalent to: a2
Ä
x4 − 1

ä
+2x2

Ä
a4 − 1

ä
≥ 0

ax2+2a2x ≥ a+2x, equivalent to: a
Ä
x2 − 1

ä
+2x

Ä
a2 − 1

ä
≥ 0.

Thus, the inequality E(a, x, x) ≥ 0 is proved.

So, the inequality in the statement E(a, b, c) ≥ 0 is also proved.

Finally, we want to point out that other inequalities involving
differences of means have been published in ([1] [3] [2] [4]). The
reader is invited to check and study these inequalities.
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On Second Degree
Polynomial

Navid Safaei

1 Introduction

In several instances, we have to deal with some formulations akin
to the second-degree polynomial. Indeed, the substantial part
of the proof would take its root in that topic. In this article, we
present some applications of second-degree polynomials in solving
inequalities, number theory problems, and functional equations.

2 Some basic observations

By the quadratic form we mean any polynomial ax2 +bxy+cy2 for
some real numbers a, b, c. Of special interest is the second-degree
polynomial that is sometimes called quadratic trinomial. That
is, the polynomial of the form P (x) = ax2 + bx+ c.

There are several identities in relation to quadratic polynomials,
one of them is the identity of completing the square, that is

4aP (x) = (2ax+ b)2 + 4ac− b2.
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3 Second-degree polynomial and in-
equalities

Several inequalities problems can be solved by applying known
facts about second-degree polynomials. This section helps readers
becoming be more aware of such nice applications. In so doing we
will prepare the following proposition about the extremal values of
a second-degree polynomial in a certain interval.

Proposition 1. Here are some facts about the quadratic polyno-
mial ax2 + bx+ c.

• If a > 0 then the function is strictly decreasing on the interval
(−∞, −b

2a
) and is strictly increasing in the interval (−b

2a
,+∞).

Indeed, in order to find the maxima and minima of such a
function on an interval [A,B] we should compare A,B with
−b
2a

. The maximum value would be max{P (A), P (B)}, but the
minimum value would depend on the relative location of A,B
with respect to −b

2a
. Indeed, if A < B < −b

2a
or −b

2a
< A < B

then the minimum occurs at B or A. Finally, if A < −b
2a
< B

then the minimum occurs at −b
2a

.
• If a < 0 exchange every maximum by a minimum in the above

lines.

We shall then provide the following note for our upcoming prob-
lems.

Note. Sometimes in order to show that some inequality such as
P (x1, . . . , xn) ≥ 0 is true, we can use what we have learned
about quadratic polynomials. It suffices to ensure that the poly-
nomial is in degree 2 with respect to at least one of xi, i = 1, . . . , n.
Then, we can rewrite it as A(x2, . . . , xn)x2

1 + B(x2, . . . , xn)x1 +
C(x2, . . . , xn) ≥ 0 and try to use the discriminant for proving it.

Problem 1. Let n be a positive integer and a1 ≤ · · · ≤ a2n be real
numbers. Prove that

a1an+1 + a2an+2 + · · ·+ ana2n ≤
1

4n
(a1 + · · ·+ a2n)2.
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Solution. Let Pi(x) = (x− ai)(x− ai+n), i = 1, 2, . . . , n and

P (x) = P1(x) + · · ·+ Pn(x)

= nx2 − (a1 + · · ·+ a2n)x+ a1an+1 + · · ·+ ana2n.

Since an ≤ x ≤ an+1 we have Pi(x) ≤ 0 for each i. Thus,
P (x) ≤ 0. Hence, the discriminant must be positive. Thus,

(a1 + · · ·+ a2n)2 − 4n(a1an+1 + · · ·+ ana2n) ≥ 0.

The next problem is related to the presented proposition.

Problem 2. Let x, y, z be real numbers such that x−y+z−1 = 0
and xy+ 2z2 + 6z+ 1 = 0 find the minimum of (x− 1)2 + (y+ 1)2

Solution. Note that y = x+ z − 1 and

x(x+ z − 1) + 2z2 − 6z + 1 = x2 + (z − 1)x+ 2z2 − 6z + 1.

The discriminant is −7z2 + 22z − 3 ≥ 0. Hence, z ∈ [1
7
.3]. Thus,

(x− 1)2 + (y + 1)2 = (y − x)2 + 2xy + 2(y − x) + 2

= (z − 1)2 + 2(−2z2 + 6z − 1) + 2(z − 1) + 2 = −3z2 + 12z − 1.

So, we need to find the minimal value of P (z) = −3z2 + 12z− 1 in
the interval [1

7
, 3]. According to the above proposition, we should

compare P (1
7
) and P (3). The answer is 22

49
occurs at z = 1

7
.

Next problem is a bit more tricky.

Problem 3. Let a, b, c be non-negative real numbers such that a+
b+ c = 3. Find the maximum of a+ ab+ bc+ ca and a+ ab+ bc.

Solution. We have

a(1 + b+ c) + bc ≤ a(1 + b+ c) +
(b+ c)2

4

= a(4− a) +
(3− a)2

4
=

1

4
(10a+ 9− 3a2).
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According to what presented in the proposition, 10a+ 9− 3a2 ≤ 52
3

the maximum occurs at a = 5
3
. On the other hand, a + b ≤

a+ b+ c = 3 hence

a+ ab+ bc = a+ b(a+ c) = a+ b(3− b)
≤ 3− b+ b(3− b) = (b+ 1)(3− b)
= 4− (b− 1)2 ≤ 4.

The next problem contains a nice application of this topic.

Problem 4. Find the smallest k such that

k(x2 + y2 + z2 − xy − yz − zx) + (xyz − x− y − z + 2) ≥ 0

for all x, y, z ≥ 0.

Solution. Taking x = y = 2, z = 0 then k ≥ 1
2
. We prove that

k = 1
2

works. There are two of x, y, z , say y, z such that x(y −
1)(z − 1) ≥ 0. Yielding

xyz ≥ xy + xz − x

Hence,

2P ≥ (x2 + y2 + z2 − xy − yz − zx) + 2(xy + xz − x− x− y − z + 2)

= x2 + (y + z − 4)x+ (y2 + z2 − yz − 2y − 2z + 4).

The discriminant is

(y + z − 4)2 − 4(y2 + z2 − yz − 2y − 2z + 4) = −3(y − z)2 ≤ 0.

Remark. As an alternative proof for the last part, we can also
write

(x+
y

2
+
z

2
− 2)2 +

3

4
(y − z)2 ≥ 0.

The next problem is the last problem of this section. In order to
bring about insightful proof, we added plenty of subtleties to the
proof.
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Problem 5. Let a, b, c ∈ [0, 1], a + b + c = 2 find the maximum
value of

a4 + b4 + c4 +
11

2
abc

Solution. We want to find real numbers A,B,C such that x4 ≤
Ax2 + Bx + C , for all x ∈ [0, 1]. In so doing, we need to have
x4 − Ax2 − Bx − C ≤ 0 for all x ∈ [0, 1]. We also want to make
this partial inequality consistent with our original inequality. That
is, we want to plug x = a, x = b, x = c and add up them to have

a4 + b4 + c4 ≤ A(a2 + b2 + c2) +B(a+ b+ c) + 3C

= A(4− 2(ab+ ac+ bc)) + 2B + 3C.

That is,

a4 + b4 + c4 ≤ 4A+ 2B + 3C − 2A(ab+ ac+ bc).

So, the equality case of our partial inequality must be consistent
with our original inequality. We now need an educated guess about
the maximum of a4 + b4 + c4 + 11

2
abc. If we put c = 1 for example

then we should maximize a4 + b4 + 11
2
ab under the condition

a + b = 1. We can see that this can happen at (a, b) = (1
2
, 1
2
).

Thus, in order to determine A,B,C , we can impose equality cases
x = 1

2
, 1 to our inequality. Since we opt that our inequality holds

true for all x ∈ [0, 1] we should have a double root at 1
2
, otherwise,

we would have a change of sign around 1
2
. So, three out of the four

roots of the polynomial x4 −Ax2 −Bx− C must be 1, 1
2
, 1
2
. Since

in this polynomial the sum of the roots is zero, it follows that -2
would be the remaining root. That is,

x4 −Ax2 −Bx− C = (x+ 2)(x−
1

2
)2(x− 1)

It is clear that the right side would always be non-positive in
[0, 1]. So, comparing the coefficients of x2, x1, x0 , it follows that
(A,B,C) = (11

4
,−9

4
, 1
2
). Indeed, we can state the following lemma.

Lemma 1. x4 ≤ 1
4
(11x2 − 9x+ 2), for all x ∈ [0, 1]
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Proof. Notice that the desired inequality is equivalent to

(4x2 − 4x+ 1)(x2 + x− 2) = (2x− 1)2(x− 1)(x+ 2) ≤ 0

Hence,

a4 + b4 + c4 ≤
11(a2 + b2 + c2)− 9(a+ b+ c) + 6

4

= 8−
11

2
(ab+ ac+ bc).

Hence,

a4 + b4 + c4 +
11

2
abc ≤ 8−

11

2
(ab+ ac+ bc− abc).

Notice that

ab+ ac+ bc− abc = (1− a)(1− b)(1− c) + a+ b+ c− 1

= (1− a)(1− b)(1− c) + 1 ≥ 1.

That is,

a4 + b4 + c4 +
11

2
abc ≤ 8−

11

2
=

5

2

Equality occurs whenever (a, b, c) = (1, 1
2
, 1
2
), (1

2
, 1, 1

2
), (1

2
, 1
2
, 1).

4 Second-degree polynomial and Num-
ber Theory

In this section, we present several problems that either need direct
or indirect application of second-degree polynomials. In our course,
we leap frequently between algebra and number theory. The very
first problem of this section only needs completing the square.

Problem 6. Let x, y, z be positive integers such that

2(x2 + y2 + z2 + 2) = (x+ y + z)2

prove that xy+x+y− z, yz+y+ z−x, zx+ z+x−y are perfect
square.
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Solution. Notice that (x+y−z)2 = 4(xy−1). Hence, xy−1 = a2

thus, x+ y − z = 2a or −2a. Then,

xy + x+ y − z = (a± 1)2

For the next three problems, we need the following important
corollary.

Corollary 1. Let a, b, c be rational numbers such that a 6= 0 and
the polynomial ax2+bx+c has a rational root, then its discriminant,
D = b2 − 4ac must be square of a rational number.

We also need the following key note.

Note. In the course of investigation that the discriminant D = b2−
4ac is a perfect square, comparing it with some consecutive perfect
squares of integers can bring lots of fruition.

Problem 7. Find all a such that there are infinitely many pairs
(k, n) of integers such that

kn2 + (2k + 1)n+ k2 = a.

Solution. Rewrite it as k2 + k(2n + n2) + 2n − a = 0. The dis-
criminant is D = (n2 + 2n)2 − 4(n− a) which must be a perfect
square, but D − (n2 + 2n + 1)2 = −2n2 − 8n + 1 + 4a and
D − (n2 + 2n− 1)2 = 2n2 + 4a+ 1. Thus, the leading coefficient
of −2n2 − 8n + 1 + 4a is negative, so there would be a positive
integer A such that −2n2−8n+1+4a < 0 for all |n| ≥ A. On the
other hand, since the leading coefficient of the quadratic trinomial
2n2 + 4a+ 1 is positive, there would be a positive integer B such
that 2n2 + 4a + 1 > 0 for all |n| ≥ B . Let Thus, for a fixed a we
have

(n2 + 2n− 1)2 < D < (n2 + 2n)2

for all |n| ≥ max{A, a}. Hence, D can not be a perfect square
for all but finitely many positive integers n. Since n is bounded,
the possibilities for k would also be bounded. Because for a
certain n there would at most be two possibilities for k, that is,
k = −2n−n2±

√
D

2n2 , the total choices.
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Problem 8. Find all positive integers a, b such that a+ b2 is divis-
ible by a2b− 2.

Solution. If a = 1 then b ∈ {1, 3, 7}. If a = 2 then b ∈ {1, 2, 5}. If
a = 3 then there would be no b. Assume now, a ≥ 4 then writing
a+ b2 = c(a2b− 2) or b2 − ca2b+ a+ 2c = 0. Hence,

D = (ca2)2 − 4(a+ 2c) < (ca2)2.

Further,

D − (ca2 − 1)2 = 2c(a2 − 4)− 4a− 1

≥ 2(a2 − 4)− 4a− 1 = 2a(a− 2)− 9 > 0.

The next problem has more number theoretic substance. That is,
we should also use this well-know fact that for every prime number
p of the form 4k + 1, there are unique positive integers x, y such
that p = x2 +y2 . Moreover, if a prime number p of the form 4k+ 3
divides x2 + y2 it must divide x and y .

Problem 9. Find all prime numbers p such that there is a positive
integer n and positive integers k,m such that

(mk2 + 2)p− (m2 + 2k2)

mp+ 2
= n2.

Solution. Rewrite it as p(mk2 −mn2 + 2) = 2n2 +m2 + 2k2 that
is,

p =
2n2 +m2 + 2k2

2 +m(k − n)(k + n)
=

(k + n)2 + (k − n)2 +m2

2 +m(k − n)(k + n)
.

Let (a, b, c) = (k + n, k − n,m) then p can be written in the form
a2+b2+c2

2+abc
. That is, we want to find which primes can be written

in this form for some integers a, b, c. Let p ≡ 1 (mod 4) then
there are positive integers x, y such that p = x2 + y2 then taking
a = x + y, b = x− y and c = 0 we find that p = 1

2
(2x2 + 2y2) =

x2 + y2 . For p = 2 then taking a = 2, b = c = 0. Assume now
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p ≡ 3 (mod 4). Then, we prove that there is no such a, b, c. We
can also assume that a ≥ b ≥ c. Then if 0 > b ≥ c then replace
(b, c) with (−b,−c). If c < 0 since 2 + abc > 0 we find that
(a, b, c) = (1, 1,−1). Thus, p = 3. So, assume that c > 0. Rewrite
it as

a2 − (pbc)a+ b2 + c2 − 2 = 0

Consider the solution (a, b, c) with a ≥ b ≥ c > 0 such that
a+b+c has the minimal value. According to the choice of (a, b, c),

it follows that a =
pbc−
√

(pbc)2−4b2−4c2+8p

2
. Therefore,

pbc−
»

(pbc)2 − 4b2 − 4c2 + 8p

2
≥ b

then,
pbc− 2b ≥

»
(pbc)2 − 4b2 − 4c2 + 8p.

That is,
2b2 + c2 ≥ 2p+ pb2c

Since b ≥ c ≥ 0 then 3b2 ≥ 2b2 + c2 ≥ 2p+ pb2c > pb2c. That is
pc < 3 which is not possible. So, the only possible solutions are
p = 2, p = 3, p ≡ 1(mod4).

Remark. Considering the minimal solution (a, b, c) with respect
to the sum a + b + c has a root in a well-known approach called
Vieta’s jumping. There were several problems in mathematical com-
petitions that needed the adoption of such techniques. However, we
have not recently had good problems in mathematical competitions
about that.

In the next two examples, the reader must use some properties
of quadratic expressions inline with number theoretic facts about
primes dividing sum of two squares of integers.

Problem 10. Let p, q be prime numbers such that p3 − p2 − q2 is
a perfect square. Prove that p = q .

Solution. Assume p3 − p2 − q2 = n2 . If p ≡ 1(mod4) then 4
divides q2 + n2 . Then q = 2. Thus, n2 = p3 − p2 − 4 = (p −
2)(p2 + p+ 2). Since gcd(p− 2, p2 + p+ 2) = 1 we find that p2+
p+ 2 must be a perfect square. Absurd. If p ≡ 3 (mod 4) then p
divides q2 + n2 . This implies that p | q . Hence, p = q .
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Problem 11. Find all positive integers m,n such that m4−m2+1
2n3−2n+11

is
an integer.

Solution. Let N = 2n3−2n+11 = 2n(n−1)(n+1)+11 then N ≡ 3
(mod 4). Hence, it has a prime divisor of that form. Thus, there is
a prime p ≡ 3 (mod 4) dividing m4 −m2 + 1 = (m2 − 1)2 + m2 .
Impossible.

This problem indirectly depends on quadratic expressions, restric-
tions between consecutive squares of integers, and some algebraic
calculation.

Problem 12. Let x > y > 2022 and xy+x+y is a perfect square.
Prove that there is a positive integer z such that z ∈ [x+3y+1, 3x+
y + 1] and x+ y + z, x2 + xy + y2 are coprime.

Solution. Let t =
√
xy + x+ y and z = x+ y + 2t+ 1 then note

that

y <
»
y2 + y <

√
xy + x+ y = t <

»
x2 + 2x < x+ 1.

That is, y < t ≤ x. Then, x+ 3y + 1 ≤ z ≤ 3x+ y + 1. Moreover,

xy + yz + zx = (x+ y + t)2,

xy + yz + zx+ z + y + x = (x+ y + t+ 1)2.

If there is a prime number p such that p divides x + y + z and
x2 + xy + y2 then y + x ≡ −z (mod p) hence,

x2 + y2 + xy = (x+ y)2 − xy ≡ −z(x+ y)− xy
≡ −(xy + zx+ yz) (mod p).

Then, p divides xy + zx + yz and x + y + z . Thus, p divides
(x+ y + t)2 and (x+ y + t+ 1)2 .

Remark. The key idea of this problem is borrowed from the follow-
ing problem that was originally proposed as Kvant 1979.

Problem. Let x, y be positive integers such that xy + x + y is a
perfect square, prove that there is a positive integer z such that
xy + z, yz + x, zx+ y, yz + y + z, xz + z + x, xy + yz + zx, xy +
yz + zx+ x+ y + z are all perfect square.
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Solution. That is, taking t =
√
xy + y + x then taking z = x+y+

2t+ 1.

yz + y + z = (y + t+ 1)2,

xz + z + x = (z + t+ 1)2,

xy + z = (t+ 1)2,

yz + x = (y + t)2,

zx+ y = (x+ t)2,

xy + yz + zx = (x+ y + t)2,

xy + yz + zx+ x+ y + z = (x+ y + t+ 1)2.

We finish this section with a nice problem that needs almost all of
the techniques we presented as well as the adoption of the Chinese
Remainder Theorem.

Problem 13. Let n be a positive integer and P1, . . . , Pn be quadratic
polynomials with integer coefficients. Prove that there is a positive
integer k such that none of the equations P1(x) = k, . . . , Pn(x) = k
has no integer solutions.

Solution. Let Pi(x) = aix
2 + bix + ci then we should find some

integer k such that aix2 +bix+ci−k = 0 has no integer solutions.
That is, b2i − 4ai(ci − k) must not be perfect square.

Taking primes p1, . . . , pn large enough then there would be a posi-
tive integer yi such that 4aiyi ≡ 1 (mod p2i ). Letting

k ≡ (4a1c1 − b21 + p1)y1 (mod p21),

. . . ,

k ≡ (4ancn − b2n + pn)yn (mod p2n).

Then,

4aik ≡ 4aiyi(4aici − b2i + pi) ≡ 4aici − b2i + pi.

That is, Di ≡ b2i − 4aici + 4aik ≡ pi (mod p2i ).

Problem 14. Find all integers m,n such that

(2n2 + +5m− 5n−mn)2 = m3n.
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Solution. Rewrite it as (2n2 +5m−5n−mn)2−n4 = m3n−n4. It
follows that (n2+5m−5n−mn)(3n2+5m−5n−mn) = n(m3−n3)
thus, (m−n)(5−n)(3n2+5m−5n−mn) = n(m−n)(m2+mn+n2)
that is, (5−n)(3n2−5n)+(n−5)2m = nm2 +n2m+n3 therefore,
nm2 + 5(2n− 5)m + n(2n− 5)2 = 0. Now, if n = 0 then m = 0.
Otherwise, according to the quadratic formula, it follows that

m =
5(5−2n)±

√
25(n−5)2−4n2(2n−5)2

2n
=

5(5−2n)±(2n−5)
√

25−4n2

2n
. Thus,

25− 4n2 = k2 , for some positive integer k. It follows that n = ±2
and therefore, m = 2,−18. The only solutions are (m,n) =
(0, 0), (−18,−2).

5 Second-degree polynomial and
Functional Equations

Sometimes using what we know about the behaviour and the
range of a second-degree polynomial in a certain interval can bring
immense insight to solve a problem in the functional equation.
We present one challenging problem that could have hardly been
solved without these observations.

Problem 15. Find all f : R+ → R+∪{0} such that for all x, y > 0

f(x)− f(x+ y) = f(x+ x2f(y)).

Solution 1. It is easy to verify that f(x) ≥ f(x+y) for all x, y > 0.
If f(r) = f(s) for some 0 < r < s putting (x, y) = (r, s − r) it
follows that f(r+ s2f(s− r)) = 0. Thus, there is a positive c such
that f(c) = 0. then for all x ∈ [c,+∞) we have f(x) = 0. We
then study the interval [0, c). Indeed, fix z > 0 and let 0 < ε < z
taking (x, y) = (c− ε, z) to find

0 < f(c− ε) = f(c− ε)− f(c− ε+ z) = f((c− ε)2f(z) + c− ε).

Thus, (c − ε)2f(z) + c − ε < c or (c − ε)2f(z) < ε but if we
take ε a sufficiently small one it follows that (c − ε)2f(z) tends
to c2f(z). That is if we take ε < c2f(z) then the inequality can
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not be true. That is, f is either zero of f is injective. Now, setting
(x, y) = (t, 1), (t, t2f(1)) it follows that

f(t+ 1) = f(t)− f(t2f(1) + t) = f(t2f(t2f(1)) + t).

Hence, 1 = t2f(t2f(1)). That is, f(x) = b
x

for all x > 0.

Solution 2. Again in the course of injectivity proof, we can assume
that there is a positive c > 0 such that f(c) = 0, and hence for
all x > c, f(x) = 0 and f(x) > 0 for all 0 < x < c. Choose
an arbitrary y < c we prove that there is a x < c such that
x2f(y) + x > c, x+ y > c. Indeed, for the latter, we only need to
have x > c− y and x < c. For the former, notice that x2f(y) + x
is a quadratic function in terms of x. Choosing x > c

2
to obtain

that x2f(y) > c2

4
f(y). Then, if we choose x > c − c2

4
f(y) >

c − x2f(y) we find that x2f(y) + x > c. So, we need to have
c > x > max{ c

2
, c− y, c− c2

4
f(y)}.

Then, by choosing such x for that fixed y < c we find that f(x+
y) = f(x2f(y) + x) = 0. Hence, f(x) = 0. This is absurd. So,
the function is injective. Finally, putting (x, y) = (1, t), (1, f(t)) it
follows that

f(1) = f(1 + t) + f(1 + f(t)) = f(f(t) + 1) + f(1 + f(f(t))).

Hence, f(f(t)) = t. Thus, plugging (x, y) = (x, f( y
x2 )) it follows

that

f(x) = f(y + x) + f(x+ f(
y

x2
)) = f(y + x) + f(x+ x2f(y)).

Yielding

f(
y

x2
) = x2f(y).

Plugging y = 1, we find that f(x) = b
x
.

6 Second-degree polynomial and
higher degree polynomials

In our last section, we show that our learned content concern-
ing a second-degree polynomial can be applied in higher-degree
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polynomials. Indeed, let P (x) = Ax2 +Bx+ C with A 6= 0 then
P (x) = P (−B

A
− x) for each x. This yields to the fact that P (x)

can be written as A(x+ B
2A

)2 + 4AC−B2

4A
. In short, we can say that

P (x) = Q(x+ B
2A

), where Q(x) = Ax2 + 4AC−B2

4A
. This can also be

applied in the general case, that is; if for a certain polynomial P (x)
we have P (x) = P (C − x) for some constant C we can then prove
that P (x) = Q(x2 + Cx), for some polynomial Q(x). In the next
problem, we shall use different facts about quadratic expressions.

Problem 16. Find all polynomials P (x) such that P (x + 3y) +
P (3x− y) is constant for all x, y such that x2 + y2 = 1.

Solution. The transformation (x, y)→ (x + 3y, 3x− y) converts
the unit circle to x2 + y2 = 10. The transformation is invertible via
(a, b)→ (a+3b

10
, 3a−b

10
). Then, P (x) + P (y) is constant on x2 + y2 =

10.

Let us denote the unit circle by A then (x, y) and (x,−y) are both
in A. Hence, P (x) + P (−y) = P (x)+ P (y). That is, for infinitely
many y we have P (y) = P (−y). Hence, P (x) = Q(x2). Thus,

C = P (x) + P (y) = Q(x2) +Q(y2) = Q(x2) +Q(10− x2).

That is,
Q(x) +Q(10− x) = C.

Hence, Q(5 + x) + Q(5− x) = C . Then, Q(5 + x)− C
2

is an odd
polynomial. That is,

Q(5 + x)−
C

2
= xR(x2)

Hence,

P (x) = (x2 − 5)R((x2 − 5)2) +
C

2
and all polynomials of this form work.
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Contests
In this section, the Journal offers sets of problems appeared in
different mathematical contests over the world, as well as their
solutions. This gives readers an opportunity to find interesting
problems and develop their own solutions.

No problem is permanently closed. We will be very pleased to
consider new solutions to problems posted in this section for pub-
lication. Please, send submittals to José Luis Díaz-Barrero, En-
ginyeria Civil i Ambiental, UPC BARCELONATECH, Jordi Girona
1-3, C2, 08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Problems and solutions from
the 64th edition of the

International Mathematical
Olympiad (IMO)

Marc Felipe i Alsina

1 Problems and solutions

Below, we present now the five problems which were solved at
least by some Spaniard contestant (problems 1, 2, 3, 4 and 5),
and include the solutions given to them by our team (in some
case slightly modified by the deputy leader). In all the cases, the
solutions follow the ideas presented by the contestants, but we
have done some little modifications to ease the exposition.

Problem (1 IMO 2023). Determine all composite integers n > 1
that satisfy the following property: if d1, d2, . . . , dk are all the posi-
tive divisors of n with 1 = d1 < d2 < · · · < dk = n then di divides
di+1 + di+2 for every 1 ≤ i ≤ k − 2.

Solution by Guillem Beltrán. First, we see that, since n > 1 is
composite, it has at least three divisors.

Then, notice that for any prime number p, n = pm works for any
integer m ≥ 2 as its positive divisors are d1 = 1 < p < p2 <
· · · < pm−1 < pm = dk and pi | pi+1 +pi+2 because pi divides both
added numbers for every 1 ≤ i ≤ k − 2.
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Finally we want to prove that the problem statement is false
whether two or more different primes divide n, because if not,
n would be of the form pm .

Suppose that p < q are the lowest primes dividing n. Then, the
biggest positive divisors of n will be dk = n

p0
> n

p1
> · · · > n

pi
> n

q

for some integer i ≥ 1 by the assumption that p is the lowest
prime dividing n. Then the problem statement would imply that

n

q
|
n

pi
+

n

pi−1
⇒ npi | nq + npq ⇒ pi | q(1 + p)

Which is a contradiction because p divides pi for i ≥ 1 but does
not divide neither q nor p+ 1.

Problem (2 IMO 2023). Let ABC be an acute-angled triangle
with AB < AC . Let Ω be the circumcircle of ABC . Let S be
the midpoint of the arc CB of Ω containing A. The perpendicular
from A to BC meets BS at D and meets Ω again at E 6= A. The
line through D parallel to BC meets line BE at L. Denote the cir-
cumcircle of triangle BDL by ω . Let ω meet Ω again at P 6= B .
Prove that the line tangent to ω at P meets line BS on the internal
angle bisector of ∠BAC .

Solution by Jordi Ferré. We start by showing the following claim:

Claim 1. ]DPA = 90◦.

Proof. Notice how

]PDL = ]PBL = 180◦ − ]PBE = ]PAD.

Thus we get that

]PAD + ]ADP = ]PDL+ ]ADP.

But now notice how BC ⊥ AD and LD ‖ BC clearly implies that
LD ⊥ AD, which shows that ]PDL + ]ADP = ]ADL = 90◦.
So by looking at triangle 4APD, we get that

]DPA = 180◦ − ]PDL− ]APL = 90◦.
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Now define W as the midpoint of arc BC not containing A, and
T as the point on Ω for which TP is tangent to ω.

Claim 2. TS ‖ PD

Proof. Just notice that

]TPD = ]DBP = ]SBP = ]STP,

implying the desired result.

Now we notice how triangles 4APD and 4WTS are homothetic,
as PD ‖ TS , AD ‖ SW and ]DPA = ]STW = 90◦. Thus,
they must have a center of homothety, which will be exactly the
intersection of AW , PT and DS , implying that these three lines
concur. But as AW is the internal bisector of ∠BAC we are
already done.

Problem (3 IMO 2023). For each integer k ≥ 2, determine all infi-
nite sequences of positive integers a1, a2, . . . for which there exists
a polynomial P of the form P (x) = xk + ck−1x

k−1 + · · ·+ c1x+ c0,
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where c0, c1, . . . , ck−1 are non-negative integers, such that

P (an) = an+1an+2 · · · an+k

for every integer n ≥ 1.

Solution. The answer is all arithmetic sequences ai = a+(i−1)d,
with d ≥ 0 and a ∈ Z, a > 0. The solution is split into three parts.

Part I (Construction). We provide a construction for arithmetic
sequences as described above: take P (x) = (x + d) · · · (x + kd).
With this choice

P (an) = P (a+ (n− 1)d)

= (a+ nd) · · · (a+ (n− 1 + k)d)

= an+1 · · · an+k,

so the condition indeed works, as desired.

Part II (Analysis). Now, we begin our proof that the any sequence
satisfying the condition must be of this form. In this part we make
two crucial observations about the behaviour of the sequence.

Claim 1. The sequence (ai)i≥1 is nondecreasing.

Proof. Assume for the sake of contradiction that this is not true.
Choose m such that am = min{an | n ≥ 2 and an−1 > an},
which must exist since this set is nonempty by assumption, and
the sequence (ai)i≥1 is bounded below (by 0).

First I claim that in fact am = min{an | n ≥ m}. If not, there
would be some m′ > m with am′ < am . In order to not contra-
dict the definition of m, it must happen that am′−1 ≤ am′ , so
am′−1 < am . Repeat the argument with m′ − 1 instead of m′ , and
do it as many times as necessary until obtaining the contradiction
am < am , so the equality am = min{an | n ≥ m} holds.

Now, since P has nonnegative coefficients, P is increasing. Hence
from am < am−1 we obtain

1 >
P (am)

P (am−1)
=
am+1 · · · am+k

am · · · am+k−1

=
am+k

am
,
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so am+k < am . But this contradicts the minimality am = min{an |
n ≥ m}.

Claim 2. There exists a constant C such that 0 ≤ an+1 − an ≤ C
for every n ≥ 1.

Proof. First, we show that there is an integer C > 0 such that
xk−1(x + C) ≥ P (x) for every integer x > 0. This is clear; just
take C = ck−1 + ck−2 + · · ·+ c0 . Then

P (x) = xk + ck−1x
k−1 + · · · c1x+ c0

≤ xk + ck−1x
k + · · · c1xk + c0x

k

= xk−1(x+ C)

Now let n ≥ 1 be any integer. Then, using Claim 1, we have

ak−1
n (an + C) ≥ P (an) = an+1 · · · an+k ≥ an+1a

k−1
n ,

so, since an is nonnegative, an+1 ≤ an+C , and hence an+1−an ≤
C . The other inequality follows immediately from Claim 1.

Finally, note that Claim 1 implies that if the sequence is not
eventually constant, then it has limit infinity. If the sequence is
eventually constant (to some integer a), then it holds that ak =
P (a) = ak + ck−1a

k−1 + · · · + a0 ≥ ak, so P (x) = xk identically.
By backwards induction (ai)i≥1 will be constant equal to a. With
this case out of the way, assume henceforth that the sequence has
limit infinity.

Part III (Answer extraction). We now use the results of Part II to
solve the problem. By Claim 2, for every n it is true that

Sn = (an+1 − an, an+2 − an, . . . , an+k − an) ∈ {0, 1, . . . , C}k.

Since there is only a finite amount of possibilities for Sn , by infinite
pigeonhole principle, there is at least one k-tuple S = (s1, . . . , sk)
such that Sn = S for infinitely many n. In this case

P (an) = an+1an+2 · · · an+k = (an + s1)(an + s2) · · · (an + sk)

holds for infinitely many values an (since we are working on the
case where the sequence has limit infinity), so in fact P (x) =
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(x+ s1)(x+ s2) · · · (x+ sk) holds identically. Notice that s1 ≤ s2 ≤
· · · ≤ sk because of Claim 1.

Suppose that there exists another tuple Ŝ = (ŝ1, ŝ2, . . . , ŝk) 6= S
such that Ŝ = Sn for infinitely many S . We would then conclude,
using the reasoning above, that the polynomial in the statement
must be P̂ (x) = (x + ŝ1)(x + ŝ2) · · · (x + ŝk). Since only one
polynomial can satisfy the hypotheses of the statement, and a
polynomial determines its roots, we see that P = P̂ and S = Ŝ , a
contradiction. Therefore, all tuples different from S eventually die
out and we have Sn = S for every n past some constant N , that
is, an+i − an = si for i = 1, 2, . . . , k whenever n ≥ N .

Comparing consecutive values of n, it follows by a quick induction
on i that si = is1 for every 1 ≤ i ≤ k. Hence the tail sequence
(ai)i≥N is an arithmetic sequence with common difference s1 , and
P (x) = (x + s1)(x + 2s1) · · · (x + ks1). Finally, by backwards
induction, and monotonicity of P , we conclude that (ai)i≥1 must
be an arithmetic sequence. This concludes the solution.

Problem (4 IMO 2023). Let x1, x2, . . . , x2023 be pairwise different
positive real numbers such that

an =

√
(x1 + x2 + · · ·+ xn)

Ç
1

x1

+
1

x2

+ · · ·+
1

xn

å
is an integer for every n = 1, 2, . . . , 2023. Prove that a2023 > 3034.

Solution. We claim that a2n+1 ≥ 3n+ 1 ∀n ∈ N0 . We proceed by
induction, starting with n = 0, for which the proposition is true
since a1 =

√
x1

1
x1

= 1.

The given equation clearly implies ai > ai−1 , which is the same
as ai ≥ ai−1 + 1, so it suffices to prove that at least one of a2n ≥
a2n−1 + 2 or a2n+1 ≥ a2n + 2 holds. Therefore, we will arrive to a
contradiction supposing a2n = a2n−1 + 1 and a2n+1 = a2n + 1.

Let bn =
∑n
i=1 xi , ci =

∑n
i=1

1
xi

, so that bici = a2
i . Now consider we
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have that:

(a2n−1 + 1)2 = a2
2n = b2nc2n

= (b2n−1 + x2n)(c2n−1 + x−1
2n )

= b2n−1c2n−1 + x2nx
−1
2n + (b2n−1x

−1
2n + c2n−1x2n)

≥ a2
2n−1 + 1 + 2

»
b2n−1c2n−1

= a2
2n−1 + 1 + 2a2n−1

= (a2n−1 + 1)2,

where we used the AM-GM inequality. Since the left and right sides
of the inequality are equal, equality must occur where we used
AM-GM. Therefore it must happen that

b2n−1x
−1
2n = c2n−1x2n =⇒ x2n =

Ã
b2n−1

c2n−1

.

But one can deduce in a similar fashion that

x2n+1 =

Ã
b2n

c2n
=

Ã
b2n−1+x2n

c2n−1 + x−1
2n

=

Ã
b2n−1+x2

2nx
−1
2n

c2n−1 + x−1
2n

=

Õ
b2n−1+

b2n−1

c2n−1
x−1
2n

c2n−1 + x−1
2n

=

Ã
b2n−1c2n−1 + b2n−1x

−1
2n

c2n−1(c2n−1 + x−1
2n )

=

Ã
b2n−1

c2n−1

= x2n,

contradicting the fact that all the xi are pairwise different. There-
fore we have arrived to a contradiction and the induction is com-
plete.

Problem (5 IMO 2023). Let n be a positive integer. A Japanese
triangle consists of 1+2+ · · ·+n circles arranged in an equilateral
triangular shape such that for each i = 1, 2, . . . , n, the ith row
contains exactly i circles, exactly one of which is coloured red. A
ninja path in a Japanese triangle is a sequence of n circles obtained
by starting in the top row, then repeatedly going from a circle to one
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of the two circles immediately below it and finishing in the bottom
row.

In terms of n, find the greatest k such that in each Japanese trian-
gle there is a ninja path containing at least k red circles.

Solution by Roger Lidón. We claim the answer is k = blog2 nc+ 1.

First, we construct a japanese triangle with n rows such such that
every ninja path achieves at most blog2 nc+ 1 red circles. Number
the rows of the triangle 1, 2, . . . , n and split them in blog2 nc + 1
blocks, namely {1}, {2, 3}, {4, 5, 6, 7}, . . . So, the i-th block con-
tains only rows between 2i−1 and 2i − 1. Now, if a row is the k-th
of its respective block, we paint its 2k− 1-th circle red. In practice,
we are taking the first n rows of the following infinite pattern:

Now it is easy to see the ninja cannot pass through more than
blog2 nc + 1 red circles, as there are blog2 nc + 1 blocks in the
triangle and the path cannot pass through two red circles of the
same block.

Now, we need to prove that there always exists a ninja path passing
through blog2 nc + 1 red circles. We will prove this using strong
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induction, but we need to define a couple notions first. Let the
score of a circle be the maximum possible number of red circles
in a path going from the uppermost circle to the circle itself, both
included if red. So, the problem amounts to proving there exists
a circle with score at least blog2 nc+ 1. Recall that we numbered
the rows 1, 2, . . . , n from top to bottom, and for all k = 1, 2, . . . , n
define s(k) as the sum of the scores of the circles in row k and
m(k) as the greatest score among the circles in row k.

Our objective is therefore to prove m(k) ≥ blog2 nc + 1 The key
claim of the solution is the following:

Claim 1. s(k + 1) ≥ s(k) +m(k) + 1 for all k = 1, 2, . . . , n− 1.

Proof. Let x1, x2, . . . , xk be the scores of the circles in row k, and
let y1, y2, . . . , yk+1 be the scores of the circles in row k+ 1, in both
cases from left to right. By convention, define x0 = xk+1 = 0. Now
observe that

yr = max{xr−1, xr}

for each r = 1, 2, . . . , k + 1, with the exception of the (exactly one)
case where the circle in position r is red, for which

yr = max{xr−1, xr}+ 1

holds instead. Let p ∈ {1, 2, . . . , k} be the index such that xp
is a maximum, that is xp = m(k), and notice that we also have
yp = m(k) (or yp = m(k) + 1 if red). Now, observe that

s(k + 1) =
k+1∑

i=1

yi =
p−1∑

i=1

yi + yp +
k+1∑

i=p+1

yi =

=
p−1∑

i=1

max{xi, xi−1}+m(k) +
k+1∑

i=p+1

max{xi, xi−1}+ 1

≥
p−1∑

i=1

xi +m(k) +
k+1∑

i=p+1

xi−1 + 1 =
k∑

i=1

xi +m(k) + 1

= s(k) +m(k) + 1

so the claim is proven.
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Now we can take on the induction. As induction hypothesis, sup-
pose that m(k) ≥ blog2 kc + 1 for every k = 1, 2, . . . , n − 1. The
base case n = 1 is trivial, as s(1) = m(1) = 1 if n = 1. Notice
that we just need to prove that m(n) ≥ blog2 nc + 1, hence the
trivial bound

m(n) ≥ m(n− 1) = blog2(n− 1)c+ 1 = blog2 nc+ 1

works whenever n is not a power of two. So, from now on, suppose
n = 2a . Observe that by the claim

s(n) = s(1) +
n∑

i=2

(s(i)− s(i− 1)) ≥ 1 +
n∑

i=2

(m(i− 1) + 1)

= n+m(1) +m(2) + . . .+m(n− 1)

≥ n+
n−1∑

i=1

blog2 i+ 1c = 2a +
2a−1∑

i=1

blog2 i+ 1c

= 2a + (1) + (2 + 2) + (3 + 3 + 3 + 3) + · · · = 2a +
a−1∑

i=0

2i(i+ 1)

= 2a +
a−1∑

i=0

i∑

j=0

2i = 2a +
a−1∑

j=0

a−1∑

i=j

2i = 2a +
a−1∑

j=0

2a − 2j

2− 1

= 2a +
a−1∑

j=0

(2a − 2j) = a2a + 2a −
a−1∑

j=0

2j = 2aa+ 1

and we therefore obtain that

m(n) ≥
s(n)

n
=

2aa+ 1

2a
> a =⇒ m(n) ≥ a+ 1 = blog2 nc+ 1

as we wanted to prove. The induction is complete.

Marc Felipe i Alsina
BarcelonaTech
Barcelona, Spain
marc.felipe.alsina@gmail.com
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Problems and solutions from
the 2023 Barcelona Spring

Matholympiad

O. Rivero Salgado and J. L. Díaz-Barrero

1 Problems and solutions

Hereafter, we present the four problems that appeared in the paper
given to the contestants of the Barcelona Spring Matholympiad
2023 (Category II), as well as their official solutions.

Problem 1. Compute the value of the following sum:

∑ 1

j1j2 · · · jk
,

where the summation is taken over all nonempty subsets {j1, j2, . . . , jk}
of the set {1, 2, . . . , 2023}.

Solution. We have,
∑ 1

j1j2 · · · jk

= 1+
1

2
+. . .+

1

2023
+

1

1 · 2
+. . .+

1

2022 · 2023
+. . .+

1

1 · 2 · · · 2022 · 2023
.

Let

P =

Ç
1 +

1

1

åÇ
1 +

1

2

åÇ
1 +

1

3

å
. . .

Ç
1 +

1

2023

å
.



Volume 10, No. 2, Autumn 2023 203

Multiplying out, we obtain the sum of 22023 terms, one of which
equals 1 and the others which constitute exactly the sum we wish
to evaluate. But,

P =
2

1
·

3

2
·

4

3
. . .

2024

2023
= 2024.

So,
∑ 1

j1j2 · · · jk
= 2023,

and we are done.

Problem 2. Let ABC be an acute and scalene triangle and let
HA , HB , and HC be the feet of its altitudes. If side BC meets
HBHC at A′ , side CA meets HAHC at B′ and side AB meets
HAHB at C′ , then prove that points A′, B′, C′ are collinear.

Solution. Applying Menelaus theorem to triangle ABC with transver-
sal A′HCHB we get

A′B

A′C
·
HBC

HBA
·
HCA

HCB
= 1.

H

HC

HB

HA

C'

B'

A' CB

A

Figure 1: Scheme for solving problem 2.
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Likewise, using transversal B′HCHA we get

B′C

B′A
·
HCA

HCB
·
HAB

HAC
= 1,

and using transversal C′HBHA we obtain

C′A

C′B
·
HBC

HBA
·
HAB

HAC
= 1.

Multiplying up the preceding expressions yieldsÇ
A′B

A′C
·
B′C

B′A
·
C′A

C′B

å
·
Ç
HAB

HAC
·
HBC

HBA
·
HCA

HCB

å2

= 1.

Since AHA , BHB , and CHC are cevians that met at the ortho-
center H , then on account of Ceva’s Theorem, we have

HAB

HAC
·
HBC

HBA
·
HCA

HCB
= 1

Substituting this expression in the above, we get

A′B

A′C
·
B′C

B′A
·
C′A

C′B
= 1.

Using the reciprocal of Menelaus theorem, we conclude that points
A′, B′, C′ are collinear.

Problem 3. Suppose that 2023 distinct points are chosen in
the plane and the distances between them are measured. Show
that the total number of distances among the given points is at
least 32.

Solution. Let V be a set of n points on the Euclidean plane and
`1 , `2 , . . ., `k all distinct distances between the points. For each
v ∈ V , define di(v) to be the number of points that are `i away
from v . For each i = 1, 2, . . . , k, denote by Ti the set of pairs
(v, {a, b}) ∈ V ×

Ä
V

2

ä
such that both a and b are at distance `i

away from v . Obviously, for each v ∈ V , there are exactly
Ä
di(v)

2

ä
unordered pairs {a, b} ∈

Ä
V

2

ä
that make (v, {a, b}) ∈ Ti . For each
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{a, b} ∈
Ä
V

2

ä
, there are at most two such v ’s. Therefore, we have

the inequality
∑

v∈V

(
di(v)

2

)
= |Ti| ≤ 2

(
n

2

)
.

Finally, sum over all i = 1, 2, . . . , k to obtain

∑

v∈V
k

(1
k

k∑

i=1

di(v)

2

)
≤

∑

v∈V

k∑

i=1

(
di(v)

2

)
≤ 2k

(
n

2

)
.

Since
k∑

i=1

di(v) is the total number of points apart from v itself,

then we get

nk

(
(n− 1)/k

2

)
=

∑

v∈V
k

(1
k

k∑

i=1

di(v)

2

)
≤ 2k

(
n

2

)

from which it follows

k ≥
√

8n− 7− 1

4
.

In particular, if n = 2023 we obtain k ≥ 32, and the number of
distinct distances among the given points is at least 32.

Problem 4. Let m,n be integers greater or equal than 2. Show
that there exist positive integers a1 < a2 < . . . < am , such that

for any integer 1 ≤ i < j ≤ m the number
aj

aj − ai
≡ 0 (mod n).

Solution. An increasing sequence of integers a1, a2, . . . , at (not
necessarily positive) is called a good sequence if for every 1 ≤ i <
j ≤ t the number

aj

aj − ai
is integer and divisible by n. Suppose

the sequence a1, a2, . . . , at is good. We claim:

1. If at < 0, then the sequence a1, a2, . . . , at, 0 is good.
2. The sequence a1 + x, a2 + x, . . . , at + x is good as long as the

integer x is divided by n ·
∏

1≤i<j≤t
(aj − ai).
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Part (1) of the observation is obvious. Part (2) follows from the fact
that if

x = yn ·
∏

1≤i<j≤t
(aj − ai)

for some integer y , then for any 1 ≤ i < j ≤ t the number

aj + x

(aj + x)− (ai + x)
=

aj

aj − ai
+ yn ·

∏

1≤r<s≤t
(r,s)6=(i,j)

(as − ar)

is integer and divisible by n.

Let us to solve the problem. We argue by induction on m. For
m = 2 it is enough to take a1 = n − 1 and a2 = n. Induction
step. Suppose that the sequence a1 < a2 < . . . < am is good and
a1 > 0. Construct a good sequence of length m+ 1 positive terms.
Let x be a multiple of n ·

∏

1≤i<j≤m
(aj − ai) so large that x > am .

Then the sequence a1 − x, . . . , a2 − x, am − x is good and has
negative terms. Adding 0 to the end of this sequence we obtain a
good sequence a1 − x, . . . , a2 − x, am − x, 0 of length m+ 1. Let

y = n ·
∏

1≤i<j≤m
(aj − ai) ·

m∏

k=1

(x− ak).

Then y > x− a1 . Therefore, the sequence a1− x+ y, . . . , a2− x+
y, am − x+ y, y is good, has positive terms and is of length m+ 1.
This concludes the inductive step and the problem is solved.

Óscar Rivero Salgado
University of Santiago de Compostela
Spain
riverosalgado@gmail.com

José Luis Díaz-Barrero
Civil and Environmental Engineering
BarcelonaTech
Barcelona, Spain
jose.luis.diaz@upc.edu
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Solutions
No problem is ever permanently closed. We will be very pleased to
consider new solutions or comments on past problems for publica-
tion.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

Elementary Problems

E–113. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
For every positive integer n we define an as the last digit of the
sum of the first n positive integers. Compute a1 + a2 + · · ·+ a2023 .

Solution 1 by Henry Ricardo, Westchester Area Math Circle,
New York, USA. The sum is 7080, as we shall show. We note that
an is the last digit of Tn = n(n+ 1)/2, the n-th triangular number.
Furthermore, the integers an form a sequence of period 20:

an = an+20 ⇐⇒ Tn ≡ Tn+20 (mod 20)

⇐⇒ n(n+ 1) ≡ (n+ 20)(n+ 21) (mod 20)

⇐⇒ 0 ≡ 40n+ 420 (mod 20),

which is clearly true.
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We can easily check that
∑20
n=1 an = 70 and, since 2023 = 101(20)+

3, we have

2023∑

n=1

an =
100∑

k=0

20(k+1)∑

n=20k+1

an + a2021 + a2022 + a2023

= 101 · 70 + a1 + a2 + a3 = 7080.

Solution 2 by Michel Bataille, Rouen, France. Let Tn =
n∑
k=0

k =

n(n+1)

2
. We calculate T0 = 0, T1 = 1, T2 = 3, T3 = 6, T4 = 10, T5 =

15, T6 = 21, T7 = 28, T8 = 36, T9 = 45 so that a0+a1+· · ·+a9 = 35.
For 0 ≤ n ≤ 19, we have

Tn − T19−n =
n(n+ 1)− (19− n)(20− n)

2
= 20n− 190 ≡ 0 (mod 10),

hence a19−n = an and therefore a0 + a1 + · · ·+ a19 = 70.
We also have

Tn+20 − Tn =
(n+ 20)(n+ 21)− n(n+ 1)

2
= 20n+ 210 ≡ 0 (mod 10),

hence an+20 = an for all nonnegative integers n. We deduce that

2023∑

k=1

ak =

Ñ
100∑

k=0

19∑

j=0

aj+20k

é
+ a2020 + a2021 + a2022 + a2023

= 101 ·
19∑

j=0

aj + a0 + a1 + a2 + a3 = 101 · 70 + 0 + 1 + 3 + 6

and conclude: a1 + a2 + · · ·+ a2023 = 7080.

Solution 3 by Ioan Viorel Codreanu, Satulung, Maramures, Ro-
mania and the proposer. We compute the first values of an , and
we have

{an} = {a1, a2, . . . , a20, a21, a22, a23, . . . , a38, a39, a40, a41, a42, a43, . . .}

= {1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, . . . , 1, 0, 0, 1, 3, 6, . . .},
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so ai = a20+i . Since a1 + a2 + . . .+ a20 = 70, then

2023∑

i=1

ai =
2020∑

i=1

ai+a2021+a2022+a2023 = 70·101+1+3+6 = 7070+10 = 7080.

Also solved by Alberto Espuny Díaz, Universität Heidelberg, Hei-
delberg, Germany.

E–114. Proposed by Miguel Amengual Covas, Cala Figuera, Ma-
llorca, Spain. Let P , Q, R be points on the sides of a triangle
ABC which trisect the perimeter of 4ABC . Suppose that P , Q
lie on side AB . Prove that

Area (4PQR)

Area (4ABC)
>

2

9
.

Solution by the proposer. Let K , L be the feet of the altitudes
from C , R in 4ABC , 4PQR, respectively.

We have

Area (4PQR)

Area (4ABC)
=

1
2
PQ ·RL

1
2
AB · CK

=
PQ

AB
·
RL

CK
. (1)

Without lost of generality, suppose that 4ABC has perimeter 1.

P Q

R

A B

C

K L

Since
PQ =

1

3
(the perimeter of 4ABC) =

1

3
· 1 =

1

3

and

AB < (by the triangle inequality) < the semiperimeter of 4ABC =
1

2
,
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then,
PQ

AB
>

2

3
. (2)

We also have

QB ≤ QB +AP = AB − PQ <
1

2
−

1

3
=

1

6

and

QB +BR =
1

3
(the perimeter of 4ABC) =

1

3
.

Therefore

BR =
1

3
−QB >

1

3
−

1

6
=

1

6
.

Thus

RL

CK
=

Ç
from similar right-angled
triangles LBR and KBC

å
=
BR

BC
>

1/6

BC
>

1/6

1/2
=

1

3
,

(3)
where the last inequality holds because a side of a triangle is less
than its semiperimeter. From (1), (2) and (3), then,

Area (4PQR)

Area (4ABC)
>

2

3
·

1

3
=

2

9
.

E–115. Proposed by Goran Conar, Varaždin, Croatia. Let da , db ,
dc be distances from center of circumcircle to the sides of triangle
ABC and let r be the radius of its incircle. Prove that for any real
p > 1, it holds

dpa + dpb + dpc ≥ 3rp.

Solution 1 by Michel Bataille, Rouen, France. Let O denote the
circumcenter. If A = ∠BAC is not obtuse, then ∠BOC = 2A and
∠OBC = ∠OCB = 90◦−A. Otherwise, ∠BOC = 2(180◦−A) and
∠OBC = ∠OCB = A − 90◦ . In any case, we have da = R cosA
where R is the circumradius. We deduce that

da+db+dc = R(cosA+cosB+cosC) = R
Å
1 +

r

R

ã
= R+r ≥ 3r
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where the inequality follows from Euler’s inequality R ≥ 2r . Since
the function x 7→ xp is convex on (0,∞), it follows that

dpa + dpb + dpc ≥ 3

Ç
da + db + dc

3

åp
≥ 3rp.

Solution 2 by Arkady Alt, San Jose, California, USA. Let R be
circumradius of 4ABC . Since (da, db, dc) = R(cosA, cosB, cosC)

and cosA+cosB+cosC = 1+
r

R
then da+ db+ dc = R

Å
1 +

r

R

ã
=

R + r ≥ 3r because R ≥ 2r (Euler’s inequality). Also, by PM-

AM inequality we have
(
dpa + dpb + dpc

3

)1/p

≥
da + db + dc

3
⇐⇒

dpa + dpb + dpc ≥
(da + db + dc)

p

3p−1
≥

(3r)p

3p−1
= 3rp .

Solution 3 by the proposer. For every triangle hold the following
equality

da + db + dc = R+ r

(this is Carnot’s theorem) where R is its circumradius. Now we use
inequality R ≥ 2r to get da + db + dc ≥ 3r . Finally, from power
mean inequalities between powers 1 and p we get

p

√
dpa + dpb + dpc

3
≥
da + db + dc

3
=
R+ r

3
≥

3r

3
= r

from which
dpa + dpb + dpc ≥ 3rp

follows.

Also solved by Ioan Viorel Codreanu, Satulung, Maramures, Roma-
nia, and José Luis Díaz-Barrero, Barcelona, Spain.

E–116. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let n ≥ 0 be an integer number. Prove that N = 10n

3+3n2+2n+2

can be written as a sum of four perfect cubes.

Solution 1 by Henry Ricardo, Westchester Area Math Circle,
New York, USA and Ioan Viorel Codreanu, Satulung, Mara-
mures, Romania. We proceed by induction. For n = 0 we
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have N = 102 = 100 = 13 + 23 + 33 + 43 . Now assume that
the result holds for some integer M ≥ 0: 10M

3+3M2+2M+2 =
r31 + r32 + r33 + r34 ri ∈ Z, i = 1, 2, 3, 4. Then

N = 10(M+1)3+3(M+1)2+2(M+1)+2

=
(
10M

3+3M2+2M+2
)
·
(
103M2+9M+6

)

= (r31 + r32 + r33 + r34) ·

R︷ ︸︸ ︷(
10M

2+3M+2
)

3

= (r1R)3 + (r2R)3 + (r3R)3 + (r4R)3

and the proof is finished.

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
New York, USA. Since n3 + 3n2 + 2n = n(n + 1)(n + 2), then
3 | n3 + 3n2 + 2n and we have

10n
3+3n2+3n+2 = 100 ·

Å
10

n3+3n2+2n
3

ã3
.

On account that 13 + 23 + 33 + 43 = 100, then

N = (13 + 23 + 33 + 43) ·
Å
10

n3+3n2+2n
3

ã3
=
Å
1 · 10

n3+3n2+2n
3

ã3
+
Å
2 · 10

n3+3n2+2n
3

ã3
+
Å
3 · 10

n3+3n2+2n
3

ã3
+
Å
4 · 10

n3+3n2+2n
3

ã3
,

and we are done.

Solution 3 by Michel Bataille, Rouen, France. The proof is by
induction. Let p(n) = n3 + 3n2 + 2n + 2. Then p(0) = 2 and
10p(0) = 100 = 13 + 23 + 33 + 43 .
Now, assume that for some nonnegative integer n, we have 10p(n) =
a3 + b3 + c3 + d3 where a, b, c, d are positive integers. Let

a′ = a · 10n
2+3n+2, b′ = b · 10n

2+3n+2, c′ = c · 10n
2+3n+2

and d′ = d · 10n
2+3n+2.

Since p(n) + 3(n2 + 3n+ 2) = p(n+ 1) (easily checked), we obtain

a′3+b′3+c′3+d′3 = 103(n2+3n+2)(a3+b3+c3+d3) = 10p(n)+3(n2+3n+2),



Volume 10, No. 2, Autumn 2023 213

that is, a′3 +b′3 +c′3 +d′3 = 10p(n+1) . This completes the induction
step and the proof.

Also solved by the proposer.

E–117. Proposed by Mihaela Berindeanu, Bucharest. Let ABCD
be a square. If X is the midpoint of the side AB, Y is taken on
the extension of side AB , so that BY = AB/3, Z is the foot of
the perpendicular drawn from X to DY and T is the midpoint of
AZ , then show that ∠TBA = ∠DBZ .

Solution 1 by Michel Bataille, Rouen, France. Let a be the
side of the square ABCD . Since XA ⊥ AD and XZ ⊥ ZD , the
points A and Z are on the circle with diameter XD .

Scheme for solving Problem E-117

It follows that Y Z · Y D = Y X · Y A = 5a
6
· 4a

3
= 10a2

9
and therefore

Y Z = 2a
3

(since the relation Y D2 = Y A2 +AD2 provides Y D =
5a
3

). From XZ2 = XY 2 − Y Z2 , we then deduce that XZ = a
2
.

Note that ZD = Y D − Y Z = a and that XZ = XA = XB so
that the triangle AZB is right-angled at Z .

We also have ZB = a√
5

(readily obtained from Stewart’s relation

BY · ZX2 − Y X · ZB2 +XB · ZY 2 −BY · Y X ·XB = 0),
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AZ =
√
AB2 −BZ2 = 2a√

5
and BT = a

√
2
5

(since the median BT

satisfies 4BT 2 = 2
(
a2 + a2

5

)
− 4a2

5
= 8a2

5
). The result now follows

from cos∠TBA = cos∠DBZ :

cos∠TBA =
AB2 +BT 2 −AT 2

2AB ·BT
=
a2 + (2a2/5)− (a2/5)

2a · a
»

2/5
=

3
√

10

and

cos∠DBZ =
BD2 +BZ2 − ZD2

2BD ·BZ
=

2a2 + (a2/5)− a2

2a
√

2 · (a/
√

5)
=

3
√

10
.

Solution 2 by the proposer. Denote AB = BC = CD = AD =

a⇒ XY =
a

2
+
a

3
=

5a

6
and AY = a+

a

3
=

4a

3

Proposal for publication

Mihaela Berindeanu, teacher, Bucharest

10 august 2022

Let ABCD be the square. If X is the midpoint of the side AB, Y is taken on the extension of side AB, so that

BY =
AB

3
, Z is the perpendicular foot from X to DY and T is the midpoint of AZ, show that ]TBA = ]DBZ.

Solution:

Denote AB = BC = CD = AD = a⇒ XY =
a

2
+

a

3
=

5a

6
and AY = a +

a

3
=

4a

3

Figura 1:

Applying the Pythagorean Theorem in 4DAY :

DY 2 = a2 +
(
a +

a

3

)2
= a2 +

16a2

9
=

25a2

9
⇒ DY =

5a

3

Calculate the area 4DXY in two ways to find the length XZ:



A(DXY ) =
XY ·AD

2
=

5a2

6

A(DXY ) =
DY ·XZ

2
=

5a

6
·XZ

⇒ 5a

6
·XZ =

5a2

12
⇒ XZ =

a

2
⇒ XZ = AX = XB =

a

2

So, X is the circumcenter of the right triangle ABZ.





AD ⊥ AB

DZ ⊥ XZ
⇒ AD and DZ are tangents to the circumcircle of 4ABZ

In 4ABZ, BT is the median from B, BD is the symmedian from B ⇒ BT, BD are isogonal lines, so

]TBA = ]DBZ

1

Scheme for solving Problem E-117

Applying the Pythagorean Theorem in 4DAY :

DY 2 = a2 +
Å
a+

a

3

ã2
= a2 +

16a2

9
=

25a2

9
⇒ DY =

5a

3



Volume 10, No. 2, Autumn 2023 215

Calculate the area 4DXY in two ways to find the length XZ :



A(DXY ) =
XY ·AD

2
=

5a2

6

A(DXY ) =
DY ·XZ

2
=

5a

6
·XZ

⇒
5a

6
·XZ =

5a2

12
⇒ XZ =

a

2
⇒ XZ = AX = XB =

a

2

So, X is the circumcenter of the right triangle ABZ .




AD ⊥ AB

DZ ⊥ XZ
⇒ AD and DZ are tangents to the circumcircle of

4ABZ

In 4ABZ, BT is the median from B, BD is the symedian from
B ⇒ BT, BD are isogonal lines, so

∠TBA = ∠DBZ

Solution 3 by Miguel Amengual Covas, Cala Figuera, Mallorca,
Spain. Since BT is the median from B in triangle ABZ , the
equality to be proved is equivalent to establish the fact que BD is
the B−symmedian in this triangle.

Let BD intersects AZ , XZ at U , V , respectively (FIGURE 1).

We apply the Menelaus’s theorem to the two triads of points UV B ,
DV B on the sides of the two triangles AXZ , XY Z obtaining

AB

BX
·
XV

V Z
·
ZU

UA
= 1,

XB

BY
·
Y D

DZ
·
ZV

V X
= 1 (1)

where AB
BX

= 2 and XB
BY

= XB
AB
· AB
BY

= 1
2
× 3 = 3

2
.

After multiplying the expressions (1) together and doing a modest
amount of cancellation, we are left with

ZU

UA
=

1

3
·
DZ

DY
. (2)
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By the Pythagorean theorem, applied to 4DAY , in which AD
AY

=
AB
AY

= 3
4
, we obtain

DY : Y A : AD = 5 : 4 : 3.

Now, as 4DAY and 4XY Z are similar, we have DY : Y A :
AD = XY : Y Z : ZX and then

XY : Y Z : ZX = 5 : 4 : 3,

giving ZX
XY

= AY
DY

= 4
5

and

DZ

DY
= 1−

ZY

DY
= 1−

ZY

XY
·
XY

AY
·
AY

DY
= 1−

4

5
·

5

8
·

4

5
=

3

5
.

Hence, from equation (2), we get

ZU

UA
=

1

5
. (3)

A X B

D C

Z

Y

U

T
V

FIGURE 1.

On the other hand (FIGURE 2), 4ZXB is isosceles with

ZX =

Ç
3

5
XY

å
= XB.
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Let M be the midpoint of BZ and P the foot of the perpendicular
from Z to XB .

From similar right-angled triangles ZPB and XMB ,

XB

BM
=
BZ

PB
,

from which we obtain (since BM = 1
2
BZ and XB = 1

2
AB ),

BZ2 = AB · PB

andÇ
BZ

AB

å2

=
PB

AB
=
PY −BY

AB
=

(Y Z)2

XY
−BY

AB
=

Ç
Y Z

XY

å2

·
XY

AB
−
BY

AB

=

Ç
4

5

å2

·
5

6
−

1

3
=

1

5
. (4)

A X B

D C

Z

YP

M

FIGURE 2.

From (3) and (4), Ç
BZ

AB

å2

=
ZU

UA
,
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i.e., BU divides divides the opposite side ZA in the ratio of the
squares of the adjacent sides, making BU the B-symmedian of
4ABZ . Since BT is the B-median in this triangle, then BT
and BU are equally inclined to the arms of ∠B . The conclusion
follows.

Solution 4 by Miguel Amengual Covas, Cala Figuera, Mallorca,
Spain. We consider a Cartesian rectangular coordinate system
with the unity of measure the same along both coordinate axes.

We place the vertices A, B , C of the given square at convenient
points, A at (0, 0), B at (1, 0), C at (1, 1).

The coordinates of D then are (0, 1), the coordinates of X areÄ
1
2
, 0
ä
, the coordinates of Y are

Ä
4
3
, 0
©

and those of Z are
Ä
4
5
, 2
5

ä
.

Let the two lines BD and AZ intersect at U . By solving simulta-
neously the equations

BD : x+ y = 1 AZ : x− 2y = 0,

we find U
Ä
2
3
, 1
3

ä
.

According to the formula for the distance between two points, we
get AU =

√
5

3
, UZ =

√
5

15
, BZ = 1√

5
.

Hence

AU

UZ
= 5 and

AB

BZ
= (since AB = 1) =

√
5.

Thus
AU

UZ
=
AB2

BZ2
,

i.e., BU divides divides the opposite side ZA in the ratio of the
squares of the adjacent sides, making BU the B-symmedian of
4ABZ . Since BT is the B-median in this triangle, then BT
and BU are equally inclined to the arms of ∠B . The conclusion
follows.
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E–118. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Determine the integers n ≥ 0 for which there exists a real number
a > 0 such that

(a+11)n+(a+13)n+(a+17)n = (a+12)n+(a+14)n+(a+15)n.

Solution 1 by Michel Bataille, Rouen, France. Obviously, n =
0 and n = 1 are solutions. We show that there are no other
solutions.

Suppose that n ≥ 2 and assume that for some a > 0, we have

an7 − a
n
5 − (an2 − a

n
1 )− (an4 − a

n
3 ) = 0

where, for short, ai = a+ 10 + i (i = 1, 2, 3, 4, 5, 7).

Then, since xn − yn = (x− y)
n−1∑
k=0

xn−1−kyk , we obtain

2
n−1∑

k=0

an−1−k
7 ak5 −

n−1∑

k=0

an−1−k
2 ak1 −

n−1∑

k=0

an−1−k
4 ak3 = 0,

that is,

n−1∑

k=0

Ä
an−1−k
7 ak5 − a

n−1−k
2 ak1

ä
+

n−1∑

k=0

Ä
an−1−k
7 ak5 − a

n−1−k
4 ak3

ä
= 0. (1)

However, since a7 > a2 > 0, a5 > a1 > 0 and n ≥ 2, we have
an−1−k
7 ak5 > an−1−k

2 ak1 for k = 0, 1, . . . , n− 1 and the first sum in
(1) is a positive number. Similarly, the second sum is positive and
we have reached a contradiction. This completes the proof.

Solution 2 by the proposer. For n = 0 we have 3 = 3 and for
n = 1 yields 3a + 41 = 3a + 41. For n ≥ 2, we consider the
increasing convex function f : [0,+∞)→ R defined by f(x) = xn .
Applying Jensen’s inequality for all x1, x2 ∈ [0,+∞) with x1 6= x2 ,
we have

f(x1) + f(x2)

2
> f

Ç
x1 + x2

2

å
.
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Since a > 0, then

(a+ 11)n + (a+ 13)n

2
>

Ç
a+ 11 + a+ 13

2

ån
= (a+ 12)n,

(a+ 13)n + (a+ 17)n

2
>

Ç
a+ 13 + a+ 17

2

ån
= (a+ 15)n,

(a+ 11)n + (a+ 17)n

2
>

Ç
a+ 11 + a+ 17

2

ån
= (a+ 14)n.

Adding up, we get

(a+11)n+(a+13)n+(a+17)n > (a+12)n+(a+14)n+(a+15)n.

So, the answer is n = 0 and n = 1.

Also solved by Arkady Alt, San Jose, California, USA.
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Easy–Medium Problems

EM–113. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
The equation x3 +Ax−B = 0 has three real roots a, b, c. Deter-
mine the integers A and B with AB < 0 for which a6 + b6 + c6 =
277.

Solution 1 by Michel Bataille, Rouen, France. Suppose that
a, b, c are the roots of x3 + Ax− B = 0 where A,B are integers
such that AB < 0 and that a6 + b6 + c6 = 277.

We have a+b+c = 0, ab+bc+ca = A, abc = B , hence a2+b2+c2 =
(a+ b+ c)2 − 2(ab+ bc+ ca) = −2A and

a6 + b6 + c6 = (B − aA)2 + (B − bA)2 + (B − cA)2

= 3B2 +A2(a2 + b2 + c2)− 2AB(a+ b+ c)

= 3B2 − 2A3.

Thus, the relation 277 + 2A3 = 3B2 holds. Also we must have
A < 0 since otherwise the function x 7→ x3 + Ax − B would
be strictly increasing and the given equation would have non-
real roots. From −2A3 = 277 − 3B2 < 277, we then deduce
that A ∈ {−1,−2,−3,−4,−5}. However, it is readily checked
that 277 + 2A3 cannot be written as 3B2 for some integer B if
A ∈ {−1,−2,−3,−4}, while 277 + 2(−5)3 = 3 · 32 . It follows that
the only candidate for (A,B) is (−5, 3).

Conversely, a quick study of p(x) = x3 − 5x − 3 shows that the
equation p(x) = 0 has three real roots a, b, c and, since a+b+c =
0, ab+bc+ca = −5, abc = 3, we have a6+b6+c6 = 3 ·9+2 ·125 =
277.

We conclude that (−5, 3) is the only solution for (A,B).

Solution 2 by the proposer. Since a, b, and c are the real roots
of x3 + Ax− B = 0, we construct a sequence dn = an + bn + cn

for each nonnegative integer n. Since a3 = −A · a + B , then
multiplying by an , we get an+3 = −Aan+1 + Ban and dn+3 =
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−Adn+1 + Bdn for each n ≥ 0. Using (x− a)(x− b)(x− c) = 0,
we have d1 = a+ b+ c = 0, ab+ bc+ ca = A, and abc = B . Since
d0 = 3, we may compute

d2 = a2 + b2 + c2 , d3 = 3B , d4 = −Ad2 ,

d5 = −3AB +Bd2 , and d6 = 140 = A2d2 + 3B2 .

Note that in the computation of d3 we have used the well-known
identity

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)

We also have d2
1 = d2 + 2A = 0, so d2 = −2A ≥ 0 from which

A ≤ 0 follows. But, from AB < 0 we conclude that A < 0 and
B > 0. Thus 277 = −2A3 + 3B2 with integers A < 0 and B > 0.
Solving the quadratic equation, we get B = ±

√
6A3 + 861/3. The

possible integer values for A are −1,−2,−3,−4,−5 and only for
A = −5 we get the integers B = ±3. Since B > 0, then the
unique solution is (A,B) = (−5, 3).

Also solved by Henry Ricardo, Westchester Area Math Circle, Pur-
chase, New York, USA.

EM–114. Proposed by Michel Bataille, Rouen, France. Let P be
a point on the circumcircle of the triangle ABC and let A′, B′, C′

be its orthogonal projections onto the lines BC,CA,AB, respec-
tively. Prove that

B′C′2 cotA+ C′A′2 cotB +A′B′2 cotC

BC2 cotA+ CA2 cotB +AB2 cotC
=

1

2
.

Solution by the proposer. Let a = BC, b = CA, c = AB and let
F be the area of ∆ABC and R its circumradius. We have

F =
abc

4R
=

8R3 sinA sinB sinC

4R

=
R2(sin 2A+ sin 2B + sin 2C)

2

=
R(a cosA+ b cosB + c cosC)

2
.
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We readily deduce that a2 cotA + b2 cotB + c2 cotC = 4F (note
that R = a

2 sinA
= b

2 sinB
= c

2 sinC
.)

On the other hand, B′, C′ being on the circle with diameter PA,
we have PA = B′C′

sin(∠B′AC′) = B′C′

sinA
(since ∠B′AC′ = ∠BAC or

180◦ − ∠BAC ). It follows that B′C′2 cotA = PA2 sin2A · cosA
sinA

=
1
2
(PA2 sin 2A). Similar results hold for C′A′2 and A′B′2 so that

B′C′2 cotA+ C′A′2 cotB +A′B′2 cotC =
X

2

where X = PA2 sin 2A + PB2 sin 2B + PC2 sin 2C. The problem
now amounts to proving that X = 4F .

The circumcenter O of the triangle is known to be the center of
masses of A,B,C with respective masses sin 2A, sin 2B, sin 2C .
Using Leibniz’s formula, it follows that

X = mPO2 + OA2 sin 2A+ OB2 sin 2B + OC2 sin 2C

(where m = sin 2A + sin 2B + sin 2C = 4 sinA sinB sinC ) and
therefore X = 8R2 sinA sinB sinC = 4F , as desired.

EM–115. Proposed by Toyesh Prakash Sharma (Student) Agra
College, Agra, India. Show that for any n ≥ 1, it holds that

Fn
1

Fn

Ç
1

Fn

åFn

+ Ln
1

Ln

Ç
1

Ln

åLn

≥ 2Fn+1

1
Fn+1

(
1

Fn+1

)Fn+1

,

where Fn and Ln are the nth Fibonacci and Lucas number, respec-
tively.

Solution by Michel Bataille, Rouen, France. The inequality is
readily checked for n = 1, 2, 3. If n ≥ 4, then Fn and Ln are in
[e,∞) and the function f(x) = x

1
x
−x is convex on this interval

(see proof below). Using Fn + Ln = 2Fn+1 for all n (easily proved
by induction), it follows that

f(Fn) + f(Ln) ≥ 2f

Ç
Fn + Ln

2

å
= 2f(Fn+1),
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which is the required inequality. To prove that f is convex on
[e,∞), we calculate f ′′(x) and show that f ′′(x) ≥ 0 for x ≥ e.
Indeed, the computation gives

f ′(x) =

Ç
1

x2
−

lnx

x2
− lnx− 1

å
f(x)

f ′′(x) =

(
(lnx)2

Ç
1 +

1

x2

å2

+
(2 lnx)(x4 + x− 1)

x4
+
p(x)

x4

)
f(x)

where p(x) = x4 − x3 − 2x2 − 3x + 1. Since p(x) = (x − 1)4 +
3x2

Ä
x− 8

3

ä
+ x > 0 for x ≥ e (note that e > 8

3
), we see that

f ′′(x) > 0 for x ≥ e.

Also solved by Henry Ricardo, Westchester Area Math Circle, NY,
USA; José Luis Díaz-Barrero Barcelona, Spain, and the proposer.

EM–116. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let 1 =
d1 < d2 < · · · < dk = n be all divisors of a positive integer n. Find
all n, such that k ≥ 6 and

45(d4
2 + d6

2) = 2n2.

Solution by the proposer. First note that 45 = 32 · 5 is a canoni-
cal representation of 45. It is clear that 45 divide n2 , so 3 | n and
5 | n. Since n is divisible by 3 and 5, it is also divisible by 15,
hence di = 15, for some i ≥ 3.

Case 1: 2 | n. Then d2 = 2, d3 = 3. Since n is divisible by 2 and
3, it is also divisible by 6.

It is clear that 8 | 2n2 = 45(d4
2 + d6

2), hence d4 and d6 are even
numbers. Since d4 ≤ 5 and 2 | d4 , hence d4 = 4, d5 = 5, d6 = 6
and 2n2 = 45(d4

2 + d6
2) = 45(42 + 62) = 2340, n2 = 1170, which

is not a perfect square.

Case 2: 2 - n. Then d2 = 3, d3 = 5.

The possible values of (d4, d5) are (7, 9), (9, 15), (9, p), (p, 15),
(15, 25), (15, p), or (p, q), where p, q are prime numbers.
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If d6 = p, where p is a prime number, 2n2 = 45(d4
2 + p2). Since

p | 2n2 = 45(d4
2 + p2), then p | 45d4

2 , which is impossible for
prime p > d4 > 5, hence d6 is not a prime number.

(1). If d4 = 7, d5 = 9 = 32 and d6 not a prime, then d6 = 15. Thus
n2 = 45(d4

2 + d6
2)/2 = 45(72 + 152)/2 = 6165, which is not a

perfect square and this is not a solution.

(2). d4 = 9 = 32, d5 = 15 = 3 · 5. The possible values of d6 are
25 = 52 , 27 = 33 .

If d6 = 25, n2 = 45(d4
2 + d6

2)/2 = 45(92 + 252)/2 = 6165, which
is not a perfect square and this is not a solution.

If d6 = 27, n2 = 45(d4
2 + d6

2)/2 = 45(92 + 272)/2 = 18225 = 1352

and direct verification shows that n = 135 is indeed a solution.

(3). d4 = 9, d5 = p, where p is a prime number. The possible
values of d6 are 15 = 3 · 5, q , where q is a prime number.

If d6 = 15, n2 = 45(92 + 152)/2 = 6885, which is not a perfect
square and this is not a solution.

(4). d4 = p, d5 = 15, where p is a prime number, 5 < p < 15. The
possible values of d6 are 25, 3p.

If d6 = 25, then 2n2 = 45(d4
2 + d6

2) = 45(p2 + 252). Since
p | 2n2 = 45(p2 + 252), then p | 45 · 252 , which is impossible for
prime p > 5.

If d6 = 3p, where p = d4 is a prime number, 5 < p < 15,
then 2n2 = 45(d4

2 + d6
2) = 45(p2 + 9p2) = 450p2 = 2(15p)2 , so

n = 15p, where p ∈ {7, 11, 13}. Direct verification shows that
n = 105 = 7 · 15, n = 165 = 11 · 15, n = 195 = 13 · 15 are indeed
solutions.

(5). d4 = 15, d5 = 25. The possible values of d6 are 75 = 3 · 25, or
q , where q is a prime number.

If d6 = 75, n2 = 45(152 + 752)/2 = 131625, which is not a perfect
square and this is not a solution.
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(6). d4 = 15, d5 = p, where p is a prime number, p > 15. The
possible values of d6 are 25, 3p, or q , where q is a prime number.

If d6 = 25, n2 = 45(d4
2+d6

2)/2 = 45(152+252)/2 = 19125, which
is not a perfect square and this is not a solution.

If d6 = 3p, then 2n2 = 45(d4
2+d6

2) = 45(152+9p2) = 405(25+p2).
Since p | 2n2 = 405(25 +p2), then p | 405 · 25, which is impossible
for prime p > 15.

(7). d4 = p, d5 = q , where p, q are prime numbers. The only
possible values of d6 is 15.

If d6 = 15, n2 = 45(d4
2 +d6

2)/2 = 45(p2 +152)/2. Since p | 2n2 =
45(p2 + 152), then p | 45 · 152 , which is impossible for prime p > 5.

In summary, the only solutions are n = 105, n = 135, n = 165
and n = 195.

EM–117. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1,
and for all n ≥ 3, Fn+1 = Fn + Fn−1 . Prove that for each positive
integer n there is a Fibonacci number ending in at least n zeros.

Solution 1 by Michel Bataille, Rouen, France. For n ≥ 1, let
s(n) = 15 · 10n−1 . We show that Fs(n) is a multiple of 10n so that
Fs(n) ends with at least n zeros. The proof is by induction. First,
we have Fs(1) = F15 = 610, a multiple of 10. Then, assume that
Fs(n) ≡ 0 (mod 10n) holds for some positive integer n. We shall
use the following known result: for each positive integer m, F5m

5Fm
is

an integer congruent to 1 modulo 10 (see [1]).

With m = 2 · 15 · 10n−1 , we deduce that Fs(n+1) = 5F2s(n)(1 + 10k)
for some positive integer k. Since F2m = LmFm where Lm denote
the mth Lucas number, we obtain

Fs(n+1) = 5Ls(n)Fs(n)(1 + 10k) = 5Ls(n) · ` · 10n(1 + 10k)

where ` ∈ N. Now, L0 = 2 and for m ≥ 0, L3m+3 = L3m+2 +
L3m+1 = L3m + 2L3m+1 ≡ L3m (mod 2), hence any Lucas number



Volume 10, No. 2, Autumn 2023 227

of the form L3m is even. As a result, Fs(n+1) = 10r · ` · 10n(1 +
10k) for some integer r and Fs(n+1) is a multiple of 10n+1 . This
completes the induction step and the proof.

[1] Solution to Problem 11968, The American Mathematical Monthly,
Vol. 126, No 1, January 2019, p. 85

Solution 2 by the proposer. Since we have to see that a pos-
itive integer (Fibonacci number) ends in at least n zeros, then
seems to be appropriate to work (mod 10n). We consider the
pairs (Fk, Fk+1) (mod 10n). Observe that there can only be 102n

distinct ones, Thus, by the Pigeon Hole Principle, among the first
102n + 1 there must be two which coincide. Suppose they are
(Fi, Fi+1) and (Fj, Fj+1) with i < j , then Fi ≡ Fj ≡ a (mod 10n)
and Fi+1 ≡ Fj+1 ≡ b (mod 10n) with 0 ≤ a, b < 10n . By the re-
cursive definition of Fibonacci numbers, we have Fi−1 = Fi+1 − Fi
and Fj−1 = Fj+1 − Fj . Thus, Fi−1 = Fi+1 − Fi ≡ b− a (mod 10n)
and Fj−1 = Fj+1− Fj ≡ b− a (mod 10n) from which we conclude
that (Fi−1, Fi) ≡ (b− a, a) (mod 10n) and (Fj−1, Fj) ≡ (b− a, a)
(mod 10n) and the pairs (Fi−1, Fi) and (Fj−1, Fj) also coincide.
We can repeat this argument until the first one is (F1, F2) = (1, 1)
and the second one is (Fr, Fr+1) with r > 1. Thus Fr and
Fr+1 are both congruent to 1 modulo 10n . Then the number
Fr−1 = Fr+1 − Fr ≡ 0 (mod 10n) and it ends in at least n zeros.

Comment. For n = 1 pairs (F1, F2) = (1, 1) and (F61, F62) =
(2504730781961, 4052739537881) coincide (mod 10) and F60 ≡ 0
(mod 10).

EM–118. Proposed by Goran Conar, Varaždin, Croatia. The in-
radius of triangle ABC is r = 1. Prove that

∑

cyclic

1

ra + rb

Ç
1 +

rb

rc

åÇ
1 +

ra

rc

å
≥ 2,

where ra, rb, rc are their exradii. When does equality occur?
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Solution 1 by Michel Bataille, Rouen, France. With the usual
notations, we have

tan
A

2
=

r

s− a
=
ra

s
, tan

B

2
=

r

s− b
=
rb

s
, tan

C

2
=

r

s− c
=
rc

s
,

hence rarbrc =
r3s3

(s− a)(s− b)(s− c)
= rs2 and

ra + rb = rs

Ç
1

s− a
+

1

s− b

å
=

rsc

(s− a)(s− b)
=
cs

rc

(since rs =
»
s(s− a)(s− b)(s− c) by Heron’s formula). It follows

that

1

ra + rb

Ç
1 +

rb

rc

åÇ
1 +

ra

rc

å
=

(ra + rb)(rb + rc)(rc + ra)

[rc(ra + rb)]2

=
abcs3

rarbrcc2s2
=
abc

rsc2
=

4R

c2

(using abc = 4rRs). From the general inequality x2 + y2 + z2 ≥
xy + yz + zx (with equality if and only if x = y = z ), we obtain

∑

cyclic

1

ra + rb

Ç
1 +

rb

rc

åÇ
1 +

ra

rc

å
≥
Ç

4R

ab
+

4R

bc
+

4R

ca

å
=

4R · 2s
4rRs

=
2

r
.

The required inequality follows since r = 1. Equality holds if
and only if 1

a
= 1

b
= 1

c
and r = 1 that is, if and only if ABC is

equilateral with side 2
√

3.

Solution 2 by the proposer. Let us prove the following lemma:

Lemma. Let x, y, z > 0 be real numbers. Then,

yz

x
+
zx

y
+
xy

z
≥ x+ y + z .

Proof. Without loss of generality we can assume x ≥ y ≥ z (be-
cause of the symmetry). Let’s calculate

yz

x
+
zx

y
+
xy

z
≥ x+y+z ⇔ z

Ç
x

y
− 1

å
+x
Åy
z
− 1

ã
+y
Åz
x
− 1

ã
≥ 0
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⇔
z

y
(x− y) +

x

z
(y − z) +

y

x
(z − x) ≥ 0

⇔
z

y
(x− y) +

x

z
(y − z) ≥

y

x
((x− y) + (y − z)) . (∗)

While z ≤ y ≤ x it is
y

x
≤
y

z
and

y

x
≤
y

y
so

y

x
((x− y) + (y − z)) ≤

y

z
(y − z) +

y

y
(x− y) .

But

y

z
(y − z) +

y

y
(x− y) ≤

z

y
(x− y) +

x

z
(y − z) ⇔

0 ≤
1

z
(x− y)(y − z)−

1

y
(x− y)(y − z)

⇔ 0 ≤
1

yz
(x− y)(y − z)2 .

Hence (∗) is true, and also inequality from lemma is true (because
they are equivalent). This proves lemma.

We use well known identity 1
r

= 1
ra

+ 1
rb

+ 1
rc

where r denotes
inradius of triangle. Here is r = 1 so it holds

1 =
1

ra
+

1

rb
+

1

rc
⇔ rarbrc = rarb + rbrc + rcra .

Applying lemma on numbers x = ra(rb + rc), y = rb(rc + ra), z =
rc(ra + rb) we get

∑

cyc

rbrc(rc + ra)(ra + rb)

ra(rb + rc)
≥ 2(rarb + rbrc + rcra) = 2rarbrc

⇔ (rarbrc)
∑

cyc

(rc + ra)(ra + rb)

r2a(rb + rc)
≥ 2rarbrc ⇔

∑

cyc

1

rb + rc

Ç
1 +

rc

ra

åÇ
1 +

rb

ra

å
≥ 2 ,
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which we have to prove. Equality holds if and only if equality in
lemma holds, which in our case implies

ra(rb + rc) = rb(rc + ra) = rc(ra + rb) ⇔ ra = rb = rc .

For our triangle that means it has all side lengths equal, because
of known identites:

ra =
P

s− a
, rb =

P

s− b
, rc =

P

s− c
,

where P denotes area, s = a+b+c
2

and a, b, c are side lengths.
Hence, equality holds if and only if is triangle equilateral.

Also solved by Arkady Alt, San Jose, California, USA.
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Medium–Hard Problems

MH–113. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Let M be a subset of {1, 2, 3, . . . , 2023} such that for any three
elements (not necessarily distinct) a, b, c of M we have |a+b−c| >
12. Determine the largest possible number of elements of M .

Solution by Álvaro De Irízar Larrauri, CFIS, BarcelonaTech
(Student), Barcelona, Spain. First, we will prove that

|a+b−c| > 12 ∀a, b, c ∈M ⇐⇒ |a−d(b, c)| > 12 ∀a, b, c ∈M,

where d(b, c) = |b− c| is the distance between the elements b and
c.

⇒) The first condition implies |a+ c− b| > 12 ∀a, b, c ∈M since
we can choose a, b, c in any order. Then,

|a− d(b, c)| =




|a+ b− c| > 12 if c ≥ b
|a+ c− b| > 12 if b > c

⇐) Choosing b = c implies a > 12 ∀a ∈M . Then

|a+ b− c| =




|a− d(b, c)| > 12 if c ≥ b
|a+ d(b, c)| = a+ d(b, c) ≥ a > 12 if b > c

Therefore, the condition can be interpreted as "any element a in
M has to be more than 12 units away from any possible distance
between two elements of M ". We will define the following sets:

• A = {1, 2, 3, . . . , 2023}
• D = {d ∈ A|d = d(b, c) b, c ∈ M}, the set of possible

distances between elements of M
• N = {n ∈ A|∃d ∈ D tq |n− d| ≤ 12}, the set of elements in
A made "unavailable" by being 12 or less units away from an
element in D .

Notice D ⊂ N . Furthermore, since any element in M must be
bigger than 12, the maximum distance between any two elements
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in M can be at most 2023 − 13 = 2010. Let p = max(D). Since
p ≤ 2010, [p, p+ 12] ⊂ A and, therefore, [p, p+ 12] ⊂ N . Because
p is the maximum possible distance, [p+ 1, p+ 12]∩D = ∅. Thus,
|N | ≥ |D|+ 12.

Suppose |M | = m. If we take the distance between the smallest
element in M and the rest, we get m − 1 distinct distances, so
|D| ≥ m−1 and |N | ≥ m−1+12 = m+11. By construction, M∩
N = ∅, so 2023 ≥ |M |+ |N | ≥ 2m+ 11 =⇒ m ≤ 1006. We have
found an upper bound of 1006. We will now find an example where
this upper bound is attained. Let M = {1018, 1019, . . . , 2023},
formed by the last 1006 elements in A. The biggest distance is
2023− 1018 = 1005 and the smallest element is 1018. Therefore,

|a− d(b, c)| = a− d(b, c) ≥ 1018− 1005 = 13 > 12 ∀a, b, c ∈M

Solution by the proposer. The set M = {1018, 1019, . . . , 2023}
has 1006 elements and satisfy the required property, since a, b, c ∈
M ⇒ a + b − c ≥ 1018 + 1018 − 2023 = 13. We will show that
this is optimal. Indeed, suppose that M satisfies the conditions
of the problem. Let k be the minimal element of M . Then k =
|k + k − k| > 12 ⇒ k ≥ 13. Note that for every integer m, the
numbers m,m+ k − 12 cannot both belong to M , since

m+ k − (m+ k − 12) = 12.

Claim 1: M contains at most k − 12 out of 2k − 24 consecutive
integers. Indeed, we can partition the set {m,m+ 1, . . . ,m+ 2k−
23} into k − 12 pairs as follows:

{m,m+k−12}, {m+1,m+k−11}, . . . , {m+k−13,m+2k−25}.

It remains to note that M contains at most one element to each
pair.

Claim 2: M contains at mostõt+ k − 12

2

û
out of t consecutive integers. Indeed, write t = q(2k − 24) + r
with r ∈ {0, 1, 2, . . . , 2k− 25}. From the set of the first q(2k− 24)
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integers, by Claim 1, at most q(k − 12) can belong to M . Also by
Claim 1, it follows that from the last r integers, at most min{r, k−
12} can belong to M . Thus,

• If r ≤ k − 12, then at most

q(k − 12) + r =
t+ r

2
≤
t+ k − 12

2

integers belong to M .
• If r > k − 12, then at most

q(k − 12) + k − 12 =
t− r + 2(k − 12)

2
≤
t+ k − 12

2

integers belong to M .

By Claim 2, the number of elements of M amongst k + 1, k +
2, . . . , 2023 is at mostõ(2023− k) + (k − 12)

2

û
=
õ2011

2

û
= 1005.

Since amongst {1, 2, . . . , k} only k belongs to M , we conclude
that M has at most 1005 + 1 = 1006 elements as we initially
claimed.

MH–114. Proposed by Michel Bataille, Rouen, France. Let r, s
be positive integers with r ≤ s. Prove that

s∑

k=r

(
r + s

k

)2

≤ 4
s∑

k=r

(
r + s− 1

k

)2

.

Solution by the proposer. We first show that

s∑

k=r

(
r + s

k

)2

= 2
s∑

k=r

(
r + s

k

)(
r + s− 1

k

)
. (1)

Let

∆ =
s∑

k=r

(
r + s

k

)2

−
s∑

k=r

(
r + s

k

)(
r + s− 1

k − 1

)
.
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The following calculation

∆ =
s∑

k=r

(
r + s

k

)((
r + s

k

)
−
(
r + s− 1

k − 1

))

=
n∑

k=r

(
r + s

k

)(
r + s− 1

k

)

=
s∑

k=r

(
r + s

r + s− k

)(
r + s− 1

r + s− k − 1

)

=
s∑

j=r

(
r + s

j

)(
r + s− 1

j − 1

)

shows that
s∑

k=r

Ä
r+s

k

äÄ
r+s−1

k

ä
=

s∑
k=r

Ä
r+s

k

äÄ
r+s−1

k−1

ä
= ∆ and (1) is ob-

tained.

Now, the Cauchy-Schwarz inequality gives

s∑

k=r

(
r + s

k

)(
r + s− 1

k

)
≤

Ñ
s∑

k=r

(
r + s

k

)2
é1/2Ñ

s∑

k=r

(
r + s− 1

k

)2
é1/2

so that (1) leads toÑ
s∑

k=r

(
r + s

k

)2
é1/2

≤ 2

Ñ
s∑

k=r

(
r + s− 1

k

)2
é1/2

.

Squaring yields the desired inequality.

MH–115. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Find a function f : R−{0,±1} → R that is continuous everywhere
and satisfies the equation

1

x+ 1
f

Ç
x

x+ 1

å
+

2

x+ 1
f(x+ 1) = 1.

Solution 1 by Michel Bataille, Rouen, France. Extending the
problem, we show that there exists a unique function f : R −
{0, 1} → R such that

1

x+ 1
f

Ç
x

x+ 1

å
+

2

x+ 1
f(x+ 1) = 1
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for any x ∈ R−{0,−1}. The function t 7→ f0(t) = 1
9

(
2
t

+ 1
1−t + 4t− 2

)

is the unique solution. A simple calculation gives

f0

Ç
x

x+ 1

å
+ 2f0(x+ 1) =

1

9

ñÇ
4x

x+ 1
+

2

x
+ x+ 1

å
+ 2

Ç
2

x+ 1
−

1

x
+ 4x+ 2

åô
=

1

9
(9x+ 9) = x+ 1,

for any x ∈ R− {0,−1}, hence f0 is a solution.
Conversely, let f be any solution and let t 6= 0, 1. Note that 1

1−t
and 1 − 1

t
are also different from 0 and 1. Set x = t

1−t . Then
x 6= 0,−1 and the equation provides

f(t) + 2f

Ç
1

1− t

å
=

1

1− t
(1)

which holds for any t 6= 0, 1. Therefore, we also have

f

Ç
1

1− t

å
+ 2f

Ñ
1

1− 1
1−t

é
=

1

1− 1
1−t

,

that is,

f

Ç
1

1− t

å
+ 2f

Ç
1−

1

t

å
= 1−

1

t
. (2)

But (1) gives

f

Ç
1

1− t

å
=

1

2

Ç
1

1− t
− f(t)

å
and f

Ç
1−

1

t

å
= t− 2f(t)

that we carry into (2) to obtain

1

2

Ç
1

1− t
− f(t)

å
+ 2t− 4f(t) = 1−

1

t
.

Solving for f(t) shows that f(t) = f0(t), as desired.

Solution 2 by Arkady Alt, San Jose, California, USA. We have
1

x+ 1
f

Ç
x

x+ 1

å
+

2

x+ 1
f(x+ 1) = 1 ⇐⇒ f

Ç
x

x+ 1

å
+2f(x+ 1) =

x+ 1



236 Arhimede Mathematical Journal

h(x) =
x

x+ 1
, h(h(x)) =

x

x+ 1
x

x+ 1
+ 1

=
x

2x+ 1
, h3(x) =

x

2x+ 1
x

2x+ 1
+ 1

=

x

3x+ 1
. Let t = x+1 then x = t−1 and f

Ç
x

x+ 1

å
+2f(x+ 1) =

x+ 1 becomes

(1) f

Ç
t− 1

t

å
+ 2f(t) = t

Let h(t) :=
t− 1

t
, h0(t) := t, hn = h ◦ hn−1, n ∈ N.Then h2(t) =

(h ◦ h1)(t) =

t− 1

t
− 1

t− 1

t

=
1

1− t
, h3(t) := (h ◦ h2)(t) =

1

1− t
− 1

1

1− t

= t =

h0(t). Thus, (1) ⇐⇒

(2) f(h(t)) + 2f(t) = t ⇐⇒ f ◦ h1 + 2f ◦ h0 = h0 and by
replacing t with h1(t), h2(t) we

obtain f◦h2+2f◦h1 = h1, , f◦h3+2f◦h2 = h2 ⇐⇒ f+2f◦h2 =
h2.

By exclusion h2, h3 in the system





f ◦ h1 + 2f = h0

f ◦ h2 + 2f ◦ h1 = h1

f + 2f ◦ h2 = h2

we

obtain

f =
1

9
(4h0 − 2h1 + h2),that is f(t) =

1

9

Ç
4t− 2 ·

t− 1

t
+

1

1− t

å
=

4t3 − 6t2 + 3t− 2

9t(t− 1)
.

Thus, f(x) =
4x3 − 6x2 + 3x− 2

9x(x− 1)
.

Solution 3 by Álvaro De Irízar Larrauri, CFIS, BarcelonaTech
(Student), Barcelona, Spain. For simplicity, we will multiply both
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sides of the equation by (x+ 1) to obtain:

f

Ç
x

x+ 1

å
+ 2f(x+ 1) = x+ 1

We will now do the change of variable x = −y+1
y

, valid for any real
x 6= −1. We get

f

Ñ
−y+1

y

−y+1
y

+ 1

é
+ 2f

Ç
−
y + 1

y
+ 1

å
= −

y + 1

y
+ 1 ⇐⇒

f(y + 1) + 2f

Ç
−

1

y

å
= −

1

y

Doing a similar change of variable y = −z+1
z

, where y 6= −1 (so
x 6= 0), we obtain

f

Ç
−
z + 1

z
+ 1

å
+ 2f

(
−

1

−z+1
z

)
= −

1

−z+1
z

⇐⇒

f

Ç
−

1

z

å
+ 2f

Ç
z

z + 1

å
=

z

z + 1

We can express all three equations in terms of the same variable
as long as we restrict the domain to not take the values 0 and −1.
The equations are also invalid for those values of x which cancel
denominators or make the argument of f be -1, 0, or 1. Therefore,
for x ∈ R \ {−2,−1,−1

2
, 0, 1}, we have





f
(

x
x+1

)
+ 2f(x+ 1) = x+ 1

f(x+ 1) + 2f
Ä
− 1
x

ä
= − 1

x

f
Ä
− 1
x

ä
+ 2f

(
x
x+1

)
= x

x+1

We get a system of linear equations. We can solve for f(x + 1).
Substracting twice the third equation from the second one we get

f(x+ 1)− 4f

Ç
x

x+ 1

å
= −

1

x
−

2x

x+ 1
= −

2x2 + x+ 1

x2 + x

And adding 4 times the first one

9f(x+ 1) = −
2x2 + x+ 1

x2 + x
+ 4x+ 4 =

4x3 + 6x2 + 3x− 1

x2 + x
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=⇒ f(x+ 1) =
4x3 + 6x2 + 3x− 1

9x2 + 9x

Which means the final answer is

f(x) =
4(x− 1)3 + 6(x− 1)2 + 3(x− 1)− 1

9(x− 1)2 + 9(x− 1)
=

4x3 − 6x2 + 3x− 2

9x2 − 9x

Being a quotient of polynomials, it’s clearly continuous in R\{0, 1}
and, therefore, it remains continuous when we restrict its domain
to R \ {−1, 0, 1}. By construction, it must also satisfy the original
equation for x ∈ R \ {−2,−1,−1

2
, 0, 1}. Since this equation is not

valid for -2, -1, −1
2
, or 0 (because the argument of the function

takes a value outside its domain), we only have to check its validity
for x = 1. We can do so using an argument of continuity:

f

Ç
1

2

å
+ 2f(2) = lim

x→1

ñ
f

Ç
x

x+ 1

å
+ 2f(x+ 1)

ô
= lim

x→1
(x+ 1) = 2

Where the first equality is justified by the continuity of f and the
second one is due to the fact that the equation is valid for any
value of x in a sufficiently small entourage of 1.

Solution 4 by the proposer. Multiplying both sides of the given
equation by x+ 1, we get the equivalent equation

f

Ç
x

x+ 1

å
+ 2 f(x+ 1) = x+ 1.

Putting t = x+ 1, we obtain

f

Ç
t− 1

t

å
+ 2 f(t) = t.

If we denote by g(t) =
t− 1

t
, then we have g(g(t)) = g

Ç
t− 1

t

å
=

−
1

t− 1
and g(g(g(t))) = t, as can be easily checked. By subse-

quently substituting these relations into the equation, we obtain
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the following system

f

Ç
t− 1

t

å
+ 2 f(t) = t,

f

Ç −1

t− 1

å
+ 2 f

Ç
t− 1

t

å
=

t− 1

t
,

f(t) + 2 f

Ç
t− 1

t

å
= −

1

t− 1
.

Solving it, we find 5(t− 2f(t)) + f(t) = t+
1

t+ 1
+

2(t− 1)

t
from

which

f(t) =
1

9

Ç
4t−

1

t− 1
−

2(t− 1)

t

å
=

4t3 − 6t2 + 3t− 2

9t(t− 1)

follows.

MH–116. Proposed by Andrés Sáez Schwedt, Universidad de
León, León, Spain. Let ABCD be a cyclic quadrilateral such that
the segments AC and BD intersect at point E , and the lines AB
and CD intersect at point F . The circumcircle of triangle BCE
meets the line EF again at point G 6= E . Prove that

GB

GC
=
FB

FC
.

Solution 1 by the proposer. Denote by α the equal angles ∠DCA =
∠DBA. Similarly, let β = ∠GBC = ∠GEC and γ = ∠BCG =
∠BEG. Multiple applications of the law of sines allows us to
compare the ratios FB

FC
and GB

GC
.

GB

GC
=

sin(∠GCB)

sin(∠GBC)
=

sin(γ)

sin(β)
,

FB

FC
=

FB

FE
·
FE

FC
=

sin(∠FEB)

sin(∠FBE)
·

sin(∠FCE)

sin(∠FEC)

=
sin(γ)

sin(180o − α)
·

sin(180o − α)

sin(β)
,

both ratios are equal, and we are finished.



240 Arhimede Mathematical Journal

Figure 1: Scheme for solving problem MH-116

Solution 2 by Michel Bataille, Rouen, France. Let Γ be the
circle through A,B,C,D and γ be the circumcircle of ∆BCE .
Let I be the inversion with center E such that I(C) = A. Then
I(B) = D and therefore I(γ) is the line AD . It follows that I(G)
is the point H at which AD meets the line EF . Also, if p denotes
the power of E with respect to Γ, we have

GB =
|p| ·HD
EH · ED

and GC =
|p| ·HA
EH · EA

so that
GB

GC
=
HD

HA
·
EA

ED
. (1)

Now, we apply Menelaus’s theorem, first to ∆ADB and then to
∆ACD with the same transversal EF and get

HA

HD
·
ED

EB
·
FB

FA
= 1 =

HA

HD
·
FD

FC
·
EC

EA
.

By multiplication, we obtain

HA2

HD2
·
ED

EB
·
EC

EA
·
FD

FC
·
FB

FA
= 1. (2)
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Scheme for solving problem MH-116.

But we have ED · EB = EA · EC , hence ED
EB

EC
EA

= EC2

EB2 and
FD · FC = FA · FB , hence FD

FC
FB
FA

= FB2

FC2 . With (2), we deduce
that HA

HD
· EC
EB
· FB
FC

= 1 and therefore

FB

FC
=
EB

EC
·
HD

HA
=
EA

ED
·
HD

HA
=
GB

GC

(using (1)).

MH–117. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Suppose that 2023 distinct points are chosen in the plane and
the distances between them are measured. Show that the total
number of distances among the given points is at least 32.

Solution 1 by Alberto Espuny Díaz, Universität Heidelberg,
Heidelberg, Germany. Let us assume, for a contradiction, that
there is a choice of 2023 distinct points in the plane such that the
number of distances among the points is k ≤ 31. Fix one of the
points v and partition all other points into k sets based on their
distance to v . Since 2022/k > 65, by the pigeonhole principle,
one of these sets must contain at least 66 points; let us call this
set P . Moreover, observe that, by definition, all points of P are
placed on a circle around v . Now fix any u ∈ P and, since P is
contained in a circle, observe that, for each distance, there cannot
be more than 2 points of P at that distance from u. Again by the
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pigeonhole principle, this means that the points of P themselves
create at least 33 distinct distances (in fact, this is true just for
their distances to u), which contradicts the fact that k ≤ 31.

Solution 2 by the proposer. Let V be a set of n points on the
Euclidean plane and `1, `2, . . . , `k all distinct distances between
the points. For each v ∈ V , define di(v) to be the number of
points that are `i away from v . For each i = 1, 2, . . . , k, denote
by Ti the set of pairs (v, {a, b}) ∈ V ×

Ä
V

2

ä
such that both a and

b are at distance `i away from v . Obviously, for each v ∈ V ,
there are exactly

Ä
di(v)

2

ä
unordered pairs {a, b} ∈

Ä
V

2

ä
that make

(v, {a, b}) ∈ Ti . For each {a, b} ∈
Ä
V

2

ä
, there are at most two such

v ’s. Therefore, we have the inequality

∑

v∈V

(
di(v)

2

)
= |Ti| ≤ 2

(
n

2

)
.

Finally, sum over all i = 1, 2, . . . , k to obtain

∑

v∈V
k

(1
k

k∑

i=1

di(v)

2

)
≤

∑

v∈V

k∑

i=1

(
di(v)

2

)
≤ 2k

(
n

2

)
.

Since
k∑

i=1

di(v) is the total number of points apart from v itself,

then we get

nk

(
(n− 1)/k

2

)
=

∑

v∈V
k

(1
k

k∑

i=1

di(v)

2

)
≤ 2k

(
n

2

)
,

from which it follows that

k ≥
√

8n− 7− 1

4
.

In particular, if n = 2023 we obtain k ≥ 32, and the number of
distinct distances among the given points is at least 32.
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MH–118. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
BC = a,CA = b,AB = c are the side lengths of integer sided
non-degenerate triangle ABC with orthocenter H . Let M be the
midpoint of AC . Knowing that B,C,H,M are concyclic, find all
primitive triples (a, b, c) of positive integers, with the additional
property that a, b, c have no positive common divisor other than
unity.

Solution by the proposer. Let ω be the circumcircle of triangle
BHC and Γ — circumcircle of triangle ABC .

Scheme for solving problem MH-113.

Let H ′ be the symmetric point of H with respect to BC . It is well
known that H ′ ∈ Γ, hence ω is symmetric of Γ with respect to
BC .

It is clear that ∠BAC < 90◦ and ∠ACB < 90◦ since M ∈ ω .

∠BHC = ∠BH ′C =





180◦ − ∠BAC, if ∠CBA ≤ 90◦;
∠BAC, if ∠CBA > 90◦

∠BMC =




∠BHC, if ∠CBA ≤ 90◦

180◦ − ∠BHC, if ∠CBA > 90◦



 = 180◦ − ∠BAC
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Hence ∠AMB = 180◦ − ∠BMC = ∠BAC = ∠BAM so BM =
BA = c.

It is well known that BM is a median in triangle ABC and

4BM2 = 2a2 − b2 + 2c2; 4c2 = 2a2 − b2 + 2c2.

So B,C,H,M are concyclic, if and only if

2a2 − b2 − 2c2 = 0. (1)

Now we will find all primitive triples (a, b, c) of positive integers
with the property (1).

b =
»

2(a− c)(a+ c); a > c ≥ 1

It is clear that (a− c)(a+ c) is even and hence b is even, i.e. a, c
have the same parity. But if a, c are even, 2 | {a, b, c} and triples
(a, b, c) are not primitive. Hence a = 2a1 − 1, c = 2c1 − 1 for some
positive integers a1, c1 ,

b = 2
»

2(a1 − c1)(a1 + c1 − 1).

Now 2(a1 − c1)(a1 + c1 − 1) must be perfect square, so either
a1−c1 = 2km2; a1 +c1−1 = kn2 or a1−c1 = km2; a1 +c1−1 =
2kn2 for some positive integers k,m, n.

b = 4kmn

Case 1. a1 − c1 = 2km2; a1 + c1 − 1 = kn2

a1 = c1 + 2km2

2c1 = 1 + kn2 − 2km2

c = 2c1 − 1 = k(n2 − 2m2)

a = 2a1 − 1 = k(n2 + 2m2)

Hence k | {a, b, c} and the triples (a, b, c) are primitive, if and only
if k = 1, n is odd and n,m are relatively prime. From triangle
inequality a+ c > b hence 2kn2 > 4kmn; n > 2m.
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Examples
n m a b c 2a2 − b2 − 2c2

3 1 11 12 7 0

5 1 27 20 23 0

5 2 33 40 17 0

7 1 51 28 47 0

7 2 57 56 41 0

7 3 67 84 31 0

Case 2. a1 − c1 = km2; a1 + c1 − 1 = 2kn2

a1 = c1 + km2

2c1 = 1 + 2kn2 − km2

c = 2c1 − 1 = k(2n2 −m2)

a = 2a1 − 1 = k(2n2 +m2)

Hence k | {a, b, c} and the triples (a, b, c) are primitive, if and only
if k = 1, m is odd and n,m are relatively prime. From triangle
inequality a+ c > b hence 4kn2 > 4kmn; n > m.

Examples
n m a b c 2a2 − b2 − 2c2

2 1 9 8 7 0

3 1 19 12 17 0

4 1 33 16 31 0

4 3 41 48 23 0

5 1 51 20 49 0

5 3 59 60 41 0

In conclusion, all primitive triples (a, b, c) of positive integers are
(n2+2m2, 4mn,n2−2m2), m ≥ 1, n > 2m, n is odd and n,m are
relatively prime and (2n2 + m2, 4mn, 2n2 −m2), m ≥ 1, n > m,
m is odd and n,m are relatively prime.
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Advanced Problems

A–113. Proposed by Marian Ursărescu and Florică Anastase, Ro-
mania. Let A ∈ M2(C) such that detA = 1. For all B ∈ M2(C)
prove that A2B −BA2 = BA−2 −A−2B.

Solution 1 by Michel Bataille, Rouen, France. From the Hamilton-
Cayley Theorem and the hypothesis detA = 1, we deduce that A
satisfies A2 − tA+ I2 = O2 (where t is the trace of A). This leads
to

A4 + I2 = (tA− I2)2 + I2 = t2A2− 2tA+ 2I2 = t2A2− 2(tA− I2)

so that A4 + I2 = (t2 − 2)A2 .

By multiplication by A−2 , we obtain A2 + A−2 = (t2 − 2)I2 and
therefore (A2 + A−2)B = B(A2 + A−2). The required equality
follows at once.

Solution 2 by Álvaro De Irízar Larrauri, CFIS, BarcelonaTech
(Student), Barcelona, Spain.

Let A2 =

Ç
a b
c d

å
a, b, c, d ∈ C

We know that det(A2) = (detA)2 = 12 = 1. Now, using Cramer’s
Rule for inverse matrices we get:

A−2 = (A2)−1 =
1

det(A2)

Ç
d −b
−c a

å
=

Ç
d −b
−c a

å
It follows that

A2 +A−2 =

Ç
a+ d 0

0 a+ d

å
= (a+ d)Id

Since any multiple of the identity matrix clearly commutes with
any other matrix, we can conclude

(A2 +A−2)B = B(A2 +A−2) ⇐⇒ A2B +A−2B = BA2 +BA−2

⇐⇒ A2B −BA2 = BA−2 −A−2B
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Solution 3 by Moti Levy, Rehovot, Israel. detA = 1 implies

that matrix A is similar to
ñ
λ 0
0 λ−1

ô
, that is

A = P

ñ
λ 0
0 λ−1

ô
P−1,

A2 = P

ñ
λ2 0
0 λ−2

ô
P−1,

where P is invertible matrix.

The problem statement is equivalent to

A2B +A−2B = BA−2 +BA2,

or to Ä
A2 +A−2

ä
B = B

Ä
A2 +A−2

ä
.

Now,

A2 +A−2 = P

ñ
λ2 0
0 λ−2

ô
P−1 + P

ñ
λ−2 0
0 λ2

ô
P−1

= P

ñ
λ2 + λ−2 0

0 λ2 + λ−2

ô
P−1 =

Ä
λ2 + λ−2

ä
I2.

Hence A2 + A−2 is diagonal matrix which commutes with any
matrix B ∈ M2(C).

Also solved by the proposer.

A–114. Proposed by Gonzalo Gómez Abejón, Madrid, Spain. We
have an urn with N balls of different colors. Until they are all of
the same color, we repeat the following step:

• Select two balls at random, of different colours (if they are the
same color we put them back and draw another two until they
are of different color).

• Then paint the first ball of the color of the second one, then
put them back.
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Prove that given an initial set of balls, the average number of steps
needed is always an integer, and in particular if we start with N

balls of N different colors, it will take an average of N(N−1)

2
steps.

Solution 1 by Moti Levy, Rehovot, Israel. Let us assign a num-
ber from 1 to n to each one of the n colors.

A set of the balls in the urn may be represented by n-tuple
(N1, N2, · · · , Nn), where Ni is the number of balls of color i.

At each step, if the colors of the balls are the same, then they are
returned to the urn and this step is not counted. If the colors are
different, then the first ball is painted by the color of the second
one, and then they are returned to the urn.

Let Vk be the state of the urn, that is Vk is the n-tuple at step

k. Thus the initial state is V0 =

Ö
1, 1, . . . , 1︸ ︷︷ ︸
n −times

è
, an intermediate

state at step t is Vt =
Ä
N t

1, . . . N
t
n

ä
, and the final state is any

permutation of VT =

Ö
n, 0, 0, . . . , 0︸ ︷︷ ︸

n−1 −times

è
.

The following solution is after reference [1].

Now we define a discrete-time stochastic process Φt, 0 ≤ t ≤ T,

Φt :=
n∑

k=1

Ä
N t
k

ä2
, for Vt =

Ä
N t

1, . . . N
t
n

ä
. (1)

Clearly
Φ0 = n, ΦT = n2. (2)

The essence of the proof is to show that the discrete-time stochastic
process Yt

Yt := Φt − 2t (3)

is a martingale, that is, to show that

E[Yt+1|Vt, Vt−1, . . . , Vr] = Yt, t ≥ r ≥ 0. (4)
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It follows from the urn model that

E[Yt+1|Vt, Vt−1, . . . , Vr] = E[Yt+1|Vt],

hence we will show that

E[Yt+1|Vt] = Yt, t ≥ r ≥ 0 (5)

Claim: If Vt is not the final state then

E[Φt+1|Vt] = Φt + 2. (6)

Proof of Claim. Suppose colour i is drawn first and then colour j
is drawn (i 6= j ), then

Φt+1 = Φt +
Ä
N t
i − 1

ä2 − ÄN t
i

ä2
+
Ä
N t
j + 1

ä2 − ÄN t
j

ä2
= Φt − 2N t

i + 2N t
j + 2. (7)

Now suppose colour j is drawn first and then color i is drawn,
then

Φt+1 = Φt +
Ä
N t
j − 1

ä2 − ÄN t
j

ä2
+
Ä
N t
i + 1

ä2 − ÄN t
i

ä2
= Φt − 2N t

j + 2N t
i + 2. (8)

The probability of the event colour i was drawn first and then

colour j was drawn is Nt
i

n

Nt
j

n−1
and the probability of the event

colour j was drawn first and then colour i is
Nt

j

n

Nt
i

n−1
.

Hence the two probabilities are equal. Therefore

E
î
Φt+1|Vt, C{i.j}

ó
= E

î
Φt+1|Vt, C{i.j}

ó
Pr(colour i was drawn first)

+ E[Φt+1|Vt] Pr
Ä
colour j was drawn first, C{i.j}

ä
=
Ä
Φt − 2N t

i + 2N t
j + 2

äÇ1

2

å
+
Ä
Φt − 2N t

j + 2N t
i + 2

äÇ1

2

å
= Φt + 2,

where C{i.j} is the event that the colours chosen at step t+ 1 are
{i.j} regardless which colour was chosen first.
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We see that E
î
Φt+1|Vt, C{i.j}

ó
is the same for all {i, j}, hence

E
î
Φt+1|Vt, C{i.j}

ó
= E[Φt+1|Vt] = Φt + 2.

Claim: The discrete-time stochastic process Yt = Φt − 2t is a
martingale.

Proof of Claim. We have

E[Yt+1|Vt] = E[Φt+1 − 2(t+ 1)|Vt]
= E[Φt+1|Vt]− 2t− 2. (9)

Plugging (6) into (9) we get

E[Yt+1|Vt] = (Φt + 2)− 2t− 2

= Φt − 2t = Yt,

which shows that the process Yt is martingale.

Suppose the initial state Yr of urn is known then E[Yr] = Φr− 2r.

Now we use the property of martingale (see [2] chapter 6, page 239)

E[Yt] = E[Yr] = Φr − 2r, t ≥ r ≥ 0. (10)

In our case, T is the stopping time, it follows that

E[YT ] = E[ΦT − 2T ] = Φr − 2r, T > r ≥ 0. (11)

Equation (11) implies that given an initial set of balls, the average
number of steps needed is always an integer since both Φr and r
are integers.

For r = 0, we have

E[ΦT − 2T ] = Φ0 = n,

or
E[ΦT ]− 2T = n.

but
E[ΦT ] = ΦT = n2,



Volume 10, No. 2, Autumn 2023 251

hence
n2 − 2T = n,

which implies that

T =
n(n− 1)

2
.
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second edition , Academic Press.

Solution 2 by Gonzalo Gómez Abejón, Madrid, Spain. Let x1(t),
x2(t), . . . , xm(t) be the number of balls of color 1, color 2, and the
rest of the m colors at step t. We can prove that x2

1 + x2
2 + ...+ x2

m

is expected to increase by 2 each step. Lets say the balls selected
at step t are of colors A and B. Since it is just as likely that we
have drawn A first and B second as the other way around, after
one step we have:

E[xA(t+ 1)2 + xB(t+ 1)2] =
1

2
((xA(t) + 1)2 + (xB(t)− 1)2)

+
1

2
((xA(t)− 1)2 + (xB(t) + 1)2)

=
xA(t)2 − 2xA(t) + 1 + xB(t)2 + 2xB(t) + 1

2

+
xA(t)2 + 2xA(t) + 1 + xB(t)2 − 2xB(t) + 1

2

=
2xA(t)2 + 2xB(t)2 + 4

2
= xA(t)2 + xB(t)2 + 2.

Since the number of balls of colors other than A and B are un-
changed, this means that at any step t, the sum of squares is
expected to increase by 2:

E[
m∑

i=1

xi(t+ 1)2] =
m∑

i=1

xi(t)
2 + 2.
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Therefore if we define

F (t) =
m∑

i=1

xi(t)
2 − 2t

we always have E[F (t+ 1)] = F (t), unless by step t the balls were
all of the same color (that is, F (t) is a martingale). If the final step
is t = T , we have:

E[F (T )] = E[F (0)] = F (0) = x1(0)2 + . . .+ xm(0)2.

On the other hand, at the final step all our xi(T ) are zero except
for the surviving color j for which xj(T ) = N , so

E[F (T )] = E[N2 − 2T ] = N2 − 2E[T ].

In other words, E[T ] = N2−F (0)

2
, which is always an integer since

N2 has the same oddness than N = x1 + . . . + xm and than
x2
1 + x2

2 + . . .+ x2
m = F (0) (since a2 − a = a(a− 1) is even).

Finally, if x1(0) = . . . = xm(0) = 1, F (0) = N and we are left with
E[T ] = N(N−1)

2
.

A–115. Proposed by Henry Ricardo, Westchester Area Math Cir-
cle, New York, USA. Let p be a prime number. Prove that

p∑

j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

Solution 1 by Michel Bataille, Rouen, France. We have
(

2

0

)(
2

0

)
+

(
2

1

)(
3

1

)
+

(
2

2

)(
4

2

)
= 1+6+6 = 13 ≡ 5 = 22+1 (mod 22),

hence the equality holds for p = 2. If p is odd, then the problem is
problem B4 of the 1991 Putnam Mathematical Competition. Two
solutions can be found in The American Mathematical Monthly, Vol.
99, No 8, Oct. 1992, p. 723. and a third solution in Mathematics
Magazine Vol. 65, No 2, April 1992, p. 142-3.
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Solution 2 by Moti Levy, Rehovot, Israel. Let n be a positive
integer. We begin with showing that

n∑

j=0

(
n

j

)(
n+ j

j

)
=

n∑

j=0

(
n

j

)2

2n−j. (1)

The following lemma explains how to express a binomial sum as a
hypergeometric function:

Lemma: Let (αk)k≥0 satisfies the following conditions:

α0 = 1,

αk+1

αk
=

1

k + 1

(k + a)(k + b)

(k + c)
z.

Then
∞∑

k=0

αk = 2F 1(a, b; c; z),

where 2F 1(a, b; c; z) is Gauss hypergeometric function.

Let (αk)k≥0 be the sequence αk =
Ä
n

k

äÄ
n+k

k

ä
. Then α0 = 1 and

αk+1

αk
=

Ä
n

k+1

äÄ
n+k+1

k+1

äÄ
n

k

äÄ
n+k

k

ä =
1

k + 1

(k − n)(k + n+ 1)

k + 1
(−1),

hence
n∑

j=0

(
n

j

)(
n+ j

j

)
= 2F 1(−n, n+ 1; 1;−1). (2)

Similarly, let (βk)k≥0 be the sequence βk = 1
2n

Ä
n

k

ä2
2n−k . Then

β0 = 1 and

βk+1

βk
=

Ä
n

k+1

ä2
2n−k−1Ä

n

k

ä2
2n−k

=
1

k + 1

(k − n)2

k + 1

1

2

hence
n∑

j=0

(
n

j

)2

2n−j = 2n2F 1

Ç
−n,−n; 1;

1

2

å
. (3)
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The Pfaff transformation is (see Wikipedia entry: Hypergeometric
function).

2F 1[a, b; c; y] = (1− y)−a2F 1[a, c− b; 1;
y

y − 1
]. (4)

With a = −n, b = n + 1 and c = 1, the Pfaff transformation
implies that

2F 1[−n, n+ 1, 1,−1] = 2n2F 1[−n,−n; 1;
1

2
]. (5)

It follows from (2), (3) and (5) that indeed
n∑

j=0

(
n

j

)(
n+ j

j

)
=

n∑

j=0

(
n

j

)2

2n−j = 1 + 2n +
n−1∑

j=1

(
n

j

)2

2n−j. (6)

Now, if n = p, a prime number, then

p2 divides
p−1∑

j=1

(
p

j

)2

2p−j. (7)

We conclude from (6) and (7) that

p2 divides
p∑

j=0

(
p

j

)(
p+ j

j

)
− 2p − 1.

Remark: The origin of this problem is the theory of Legendre
polynomials Pn(x).

It is known that

Pn(x) =
n∑

j=0

(
n

j

)(
n+ j

j

)Ç
x− 1

2

åj
, (8)

and that

Pn(x) =
1

2n

n∑

j=0

(
n

j

)2

(x− 1)n−j(x+ 1)j. (9)

Setting x = 3 in (8) and (9) gives the identity

n∑

j=0

(
n

j

)(
n+ j

j

)
=

n∑

j=0

(
n

j

)2

2j =
n∑

j=0

(
n

j

)2

2n−j.
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Solution by the proposer. First we use a combinatorial argument
to reduce the sum to one that makes it easier to see the truth of
the problem’s claim:

p∑

j=0

(
p

j

)(
p+ j

j

)
=

p∑

j=0

2j
(
p

j

)2

.

Let S = {1, 2, . . . , p} and T = {p + 1, p + 2, . . . , 2p}. We count
the number of ordered pairs (X,Y ) of subsets X of S and Y
of X ∪ T , Y having p elements. First of all, this number is∑p
j=0

Ä
p

j

äÄ
p+j

j

ä
because for each j , 0 ≤ j ≤ p, we can choose a

subset with j elements X of S in
Ä
p

j

ä
ways; and once this X is

selected, we can choose Y (a subset with p elements of X ∪ T ) inÄ
p+j

p

ä
=
Ä
p+j

j

ä
ways.

On the other hand, we can first choose Y as a subset of S ∪ T .
More precisely, we first choose Y ∩ T as a subset of T that can
have any number j ≤ p of elements from the p elements of T , and
this can be done in

Ä
p

j

ä
ways. The remaining p− j elements of Y

can be chosen from the p elements of S in
Ä
p

p−j

ä
=
Ä
p

j

ä
ways, and

for each of these choices, X can be completed with some of the
other j elements of S (other than those already put into Y ) in 2j

ways. Thus a pair (X,Y ) of sets X ⊆ S and Y ⊆ X ∪ T with
|Y | = p can also be chosen in

∑p
j=0 2j

Ä
p

j

ä2
ways, and the equality

of the two sums is proved.

p∑

j=0

(
p

j

)(
p+ j

j

)
=

p∑

j=0

2j
(
p

j

)2

= 1 + 2p +
p−1∑

j=1

2j
(
p

j

)2

and will show that
∑p−1

j=1 2j
Ä
p

j

ä2 ≡ 0 (mod p2). To see this, we write
(for 0 < j < p)

(
p

j

)
=

p(p− 1)(p− 2) · · · (p− j + 1)

j!

=
p(p− 1)(p− 2) · · · (p− j + 1)

j(j − 1)(j − 2) · · · 2 · 1
=

A

B
= N ,
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which is an integer. Now p|A and p - B (since p is prime and
j < p) imply that p|N . This, in turn, implies that p2|N2 , or p2|

Ä
p

j

ä2
.

Therefore,
p∑

j=0

(
p

j

)(
p+ j

j

)
=

p∑

j=0

2j
(
p

j

)2

= 1 + 2p +
p−1∑

j=1

2j
(
p

j

)2

≡ 1 + 2p + 0 (mod p2).

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.

A–116. Proposed by Marian Ursărescu and Florică Anastase, Ro-
mania. Let (an)n≥1 be the sequence defined by a1 = e, an =
en · ann−1 and (bn)n≥1 such thatÇ

1 +
1

n

ån+bn
=

n∏

k=1

Ç
1 +

1

log ak

å
.

Compute lim
n→∞

bn.

Solution by Michel Bataille, Rouen, France. Let Rn =
∞∑

k=n+1

1
k!

.

We first show (by induction) that for all positive integer n, we have

log(an) = n!(e−Rn−1) (En).

Since log(a1) = 1 and R0 = e−1, the equality (E1) holds. Assume
that (En) holds for some positive integer n. Then, we have

log(an+1) = n+ 1 + (n+ 1) log(an)

= (n+ 1)!

Ç
1

n!
+ e−Rn−1

å
= (n+ 1)!(e−Rn),

hence (En+1) holds, completing the induction step.

Note that 1 + log(an) = n!
Ä

1
n!

+ e−Rn−1

ä
= n!(e − Rn) so that

1+log(an)

log(an)
= e−Rn

e−Rn−1
. It follows that

n∏

k=1

Ç
1 +

1

log ak

å
=

n∏

k=1

e−Rk

e−Rk−1

= e−Rn
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so that bn = [log(1 + 1/n)]−1[1 + log(1−Rn/e)− n log(1 + 1/n)].

Now, as n→∞ we have [log(1 + 1/n)]−1 ∼ n; also Rn ∼ 1
(n+1)!

(since 1 ≤ (n + 1)!Rn ≤
∞∑
k=0

1
(n+2)k

= n+2
n+1

) and we deduce that

log(1−Rn/e) ∼ − 1
e(n+1)!

= o(1/n). Since

1− n log(1 + 1/n) = 1− n
Ç

1

n
−

1

2n2
+ o(1/n2)

å
=

1

2n
+ o(1/n),

we finally obtain that bn ∼ n · 1
2n

as n→∞ and we conclude:

lim
n→∞

bn =
1

2
.

Also solved by the proposers.

Editor’s comment. Moti Levy, Rehovot, Israel, wrote: I suspect
that there is a typo error in the problem statement, so I took the
liberty to correct it, as follows:

Let (an)n≥1 be the sequence defined by a1 = e, an = en · ann−1

and (bn)n≥1 such thatÇ
1 +

1

n

ånbn
=

n∏

k=1

Ç
1 +

1

log ak

å
.

Compute lim
n→∞

bn.

Solution by Moti Levi. Let f(n) = ln(an), then a1 = e, an =
enann−1 imply the recurrence for f(n),

f(n) = nf(n− 1) + n, f(1) = 1, (1)

or,
f(n)

n!
=
f(n− 1)

(n− 1)!
+

1

(n− 1)!
. (2)

Let g(n) := f(n)

n!
, g(1) = 1, then it follows from (2) that the recur-

rence for g(n) is

g(n) = g(n− 1) +
1

(n− 1)!
.
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g(n) = 1 +
n−1∑

k=1

1

k!

lim
n→∞

g(n) = e,

or,

lim
n→∞

f(n)

n!
= e. (3)

Taking logarithm of both sides of (1) we get the recurrence,

ln(f(k)) = ln(k) + ln(f(k − 1) + 1). (4)

Taking logarithm of both sides of
Ä
1 + 1

n

änbn
=

n∏

k=1

(
1 + 1

ln(ak)

)
, we

get

(nbn) ln

Ç
1 +

1

n

å
=

n∑

k=1

ln

(
1 +

1

f(k)

)
. (5)

After telescoping of the sum in the right hand side of (5) (using the
recurrence (4)), we get

(nbn) ln

Ç
1 +

1

n

å
=

n∑

k=1

ln(f(k) + 1)− ln(f(k))

= ln(f(1) + 1)− ln(f(1)) +
n∑

k=2

ln(f(k) + 1)− ln(f(k))

= ln(2) +
n∑

k=2

ln(f(k) + 1)− ln(f(k))

= ln(2) +
n∑

k=2

ln(f(k) + 1)− ln(f(k − 1) + 1)− ln(k)

= ln

Ç
f(n) + 1

n!

å
(6)

Taking the limit of the left hand of (6) gives

lim
n→∞

bn ln

Ç
1 +

1

n

ån
= lim

n→∞
bn lim

n→∞
ln

Ç
1 +

1

n

ån
= lim

n→∞
bn. (7)

Taking the limit of the right hand of (6) gives

lim
n→∞

ln

Ç
f(n) + 1

n!

å
= lim

n→∞
ln

Ç
f(n)

n!

å
= ln lim

n→∞

Ç
f(n)

n!

å
= ln(e) = 1.

(8)
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Equating (7) and (8) we get

lim
n→∞

bn = 1.

A–117. Proposed by Vasile Mircea Popa, Affiliate Professor, "Lu-
cian Blaga" University of Sibiu, Romania. Show that

∫ ∞

0

x lnx

x3 + x
√
x+ 1

dx =
32

81
π2 sin

π

18
.

Solution 1 by Michel Bataille, Rouen, France. Let I denote the
integral. The change of variables x = u2 gives I = 4J where

J =
∫ ∞

0

u3 lnu

u6 + u3 + 1
du =

∫ 1

0

u3 lnu

u6 + u3 + 1
du+

∫ ∞

1

u3 lnu

u6 + u3 + 1
du

=
∫ 1

0

u3 lnu

u6 + u3 + 1
du−

∫ 1

0

v ln v

v6 + v3 + 1
dv

(from the change of variables u = 1
v

in the second integral).
Since u6 + u3 + 1 = 1−u9

1−u3 , we first obtain

J =
∫ 1

0

u3(1− u3) lnu

1− u9
du−

∫ 1

0

u(1− u3) lnu

1− u9
du

and then via the substitution u = t1/9 ,

81J =
∫ 1

0

t
−5
9 ln t

1− t
dt−

∫ 1

0

t
−2
9 ln t

1− t
dt−

∫ 1

0

t
−7
9 ln t

1− t
dt+

∫ 1

0

t
−4
9 ln t

1− t
dt

= −ψ1(4/9) + ψ1(7/9) + ψ1(2/9)− ψ1(5/9)

where ψ1 denotes the trigamma function defined by

ψ1(z) = −
∫ 1

0

tz−1 ln t

1− t
dt.

From the known relation ψ1(z) + ψ1(1− z) = π2

sin2(πz)
, we obtain

I = 4J =
4π2

81

(
1

sin2(2π/9)
−

1

sin2(4π/9)

)
.
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Thus, the problem now amounts to showing that

1

sin2(2π/9)
−

1

sin2(4π/9)
= 8 sin

π

18
. (1)

Using the formulas sin2 x − sin2 y = sin(x − y) sin(x + y) and
sinx = cos

Ä
π
2
− x

ä
, the left-hand side of (1) is equal to

√
3/2

cos2(π/18) cos(5π/18)

and (1) reduces to

sin
π

18
cos

5π

18
cos2

π

18
=

√
3

16
.

We are done since

sin
π

18
cos

5π

18
cos2

π

18
=

1

2
sin

π

9
cos

5π

18
cos

π

18

=
1

4
sin

π

9

Ç
cos

π

3
+ cos

2π

9

å
=

1

8

Å
sin

π

9
+ sin

π

3
− sin

π

9

ã
=

1

8
·
√

3

2

(since 2 sin π
9

cos 2π
9

= sin π
3
− sin π

9
).

Solution 2 by the proposer. Let us denote:

I =
∫ ∞

0

x lnx

x3 + x
√
x+ 1

dx, A =
∫ 1

0

x lnx

x3 + x
√
x+ 1

dx,

B =
∫ ∞

1

x lnx

x3 + x
√
x+ 1

dx.

We consider the integral A. We make the variable change: x = y
2
3 .

We have, successively:

A =
4

9

∫ 1

0

(1− y)y
1
3 ln y

1− y3
dy =

4

9

Ñ∫ 1

0

y
1
3 ln y

1− y3
dy −

∫ 1

0

y
4
3 ln y

1− y3
dy

é



Volume 10, No. 2, Autumn 2023 261

A =
4

9

(∫ 1

0

∞∑

k=0

y3k+1
3 ln ydy −

∫ 1

0

∞∑

k=0

y3k+4
3 ln ydy

)
;

A =
4

9

∞∑

k=0

Ç∫ 1

0
y3k+1

3 ln ydy −
∫ 1

0
y3k+4

3 ln ydy

å
We will use the following relationship:

∫ 1

0
xa lnxdx = −

1

(a+ 1)2

where a ∈ R and a ≥ 0. We obtain

A =
4

9

∞∑

k=0


 1Ä

3k + 7
3

ä2 − 1Ä
3k + 4

3

ä2, A =
4

9

∞∑

k=0




1
9Ä

k + 7
9

ä2 − 1
9Ä

k + 4
9

ä2.
We now use the following relationship:

ψ1(x) =
∞∑

n=0

1

(x+ n)2

where ψ1(x) is the trigamma function. We obtain the value of the
integral A:

A =
4

81

ñ
−ψ1

Ç
4

9

å
+ ψ1

Ç
7

9

åô
.

We consider the integral B. We make the variable change: x =
1

y
.

Then, by preceeding to the integral A, we obtain:

B =
4

81

ñ
ψ1

Ç
2

9

å
− ψ1

Ç
5

9

åô
.

Result:

I = A+B =
4

81

ñ
ψ1

Ç
2

9

å
− ψ1

Ç
4

9

å
− ψ1

Ç
5

9

å
+ ψ1

Ç
7

9

åô
.

We use the reflection formula:

ψ1(x) + ψ1(1− x) =
π2

sin2(πx)
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to obtain

ψ1

Ç
2

9

å
+ ψ1

Ç
7

9

å
=

π2

sin2 2π
9

;ψ1

Ç
4

9

å
+ ψ1

Ç
5

9

å
=

π2

sin2 4π
9

.

Result:

I =
4

81
π2

(
1

sin2 2π
9

−
1

sin2 4π
9

)
.

We have
1

sin2 2π
9

−
1

sin2 4π
9

= 8 sin
π

18
.

We will prove this equality. We use the relationship:

sin 3a = sin a(1 + 2 cos 2a).

We consider:

E =
1

sin2 2π
9

−
1

sin2 4π
9

=

Ä
1 + 2 cos 4π

9

ä2
sin2 2π

3

−
Ä
1 + 2 cos 8π

9

ä2
sin2 4π

3

E =
16

3

Ç
1 + cos

4π

9
+ cos

8π

9

åÇ
cos

4π

9
− cos

8π

9

å
=

16

3

Ç
1 + cos

4π

9
+ cos

8π

9

å
2 sin

2π

3
sin

2π

9

E =
16
√

3

3

Ç
1 + cos

4π

9
− cos

π

9

å
sin

2π

9
=

8
√

3

3

Ç
sin

2π

9
− sin

π

9

å
.

So, E = 8 sin
π

18
.

Finally,

I =
32

81
π2 sin

π

18
,

and the problem is solved.

Also solved by Moti Levy, Rehovot, Israel.
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A–118. Proposed by Michel Bataille, Rouen, France. For n ∈ N,
let S(n) =

n∑
k=1

(−1)k+1

k
. Prove that the series

∞∑

n=2

(−1)n
S(bn/2c)
n+ 1

is convergent and evaluate its sum.

Solution 1 by the proposer. Let I(n) =
∫ 1
0

xn

1+x
dx. It is well-

known that ln 2 = S(n) + (−1)nI(n) and that

lim
n→∞

nI(n) =

ñ
1

1 + x

ô
x=1

=
1

2
.

Now, let

an = (−1)n
S(bn/2c)
n+ 1

= ln(2)
(−1)n

n+ 1
+

(−1)n(−1)bn/2c+1I(bn/2c)
n+ 1

.

∞∑
n=2

(−1)n

n+1
is convergent; also, the series

∞∑
n=2

(−1)n(−1)bn/2c+1I(bn/2c)
n+1

is

absolutely convergent since as n→∞

I(bn/2c)
n+ 1

∼
1

n+ 1
·

1

2bn/2c
∼

1

n2
.

It follows that
∞∑
n=2

an is convergent. Let S be its sum.

We have ln(2)
∞∑

n=2

(−1)n

n+ 1
= (ln(2))

Ç
ln(2)− 1 +

1

2

å
= (ln(2))2 −

ln(2)

2
.

Let T =
∞∑

n=2

(−1)n(−1)bn/2c+1I(bn/2c)
n+ 1

.

Then

T =
∞∑

m=1

(
(−1)2m(−1)m+1I(m)

2m+ 1
+

(−1)2m+1(−1)m+1I(m)

2m+ 2

)

=
∞∑

m=1

∫ 1

0

(−1)m+1um

(2m+ 1)(2m+ 2)(u+ 1)
du.

Since
∞∑

m=1

∫ 1

0

∣∣∣∣∣
(−1)m+1um

(2m+ 1)(2m+ 2)(u+ 1)

∣∣∣∣∣ du ≤
∞∑

m=1

1

(2m+ 1)(2m+ 2)
<∞,
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we can interchange
∑

and
∫

and obtain

T =
∫ 1

0

( ∞∑

m=1

(−1)m+1un

(2m+ 1)(2m+ 2)

)
du

1 + u

where for u ∈ [0, 1],

∞∑

m=1

(−1)m+1um

(2m+ 1)(2m+ 2)
=

∞∑

m=1

(−1)m+1um
Ç

1

2m+ 1
−

1

2m+ 2

å
=

∞∑

m=1

(−1)m+1um

2m+ 1
−

1

2

∞∑

m=1

(−1)m+1um

m+ 1
.

From classical power series expansion, we deduce

∞∑

m=1

(−1)m+1um

(2m+ 1)(2m+ 2)
=

(
1−

arctan(
√
u)

√
u

)
−

1

2

Ç
1−

ln(1 + u)

u

å
(the function on the right being extended by continuity at 0). In
consequence,

T =
1

2

∫ 1

0

du

1 + u
−
∫ 1

0

arctan(
√
u)

√
u(1 + u)

du+
1

2

∫ 1

0

ln(1 + u)

u(1 + u)
du

with

∫ 1

0

du

1 + u
= ln 2,

∫ 1

0

arctan(
√
u)

√
u(1 + u)

du = 2
∫ 1

0

arctanx

1 + x2
dx =

π2

16

and
∫ 1

0

ln(1 + u)

u(1 + u)
du =

∫ 1

0

ln(1 + u)

u
du−

∫ 1

0

ln(1 + u)

1 + u
du =

π2

12
−

(ln 2)2

2
.

Gathering the results, we readily obtain

S =
3(ln(2))2

4
−
π2

48
.

Solution 2 by Álvaro De Irízar Larrauri, CFIS, BarcelonaTech
(Student), Barcelona, Spain. First, we will pair consecutive terms
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of the sum. Setting n = 2m for even terms and n = 2m + 1 for
odd terms, we get

∞∑

m=1

Ç
(−1)2m

S(b2m/2c)
2m+ 1

+ (−1)2m+1
S(b(2m+ 1)/2c)

2m+ 2

å
=

∞∑

m=1

Ç
S(m)

2m+ 1
−

S(m)

2m+ 2

å
=

∞∑

m=1

S(m)

(2m+ 1)(2m+ 2)

Now, let’s recall the Maclaurin series for log(x+ 1):

log(x+ 1) =
∞∑

k=1

(−1)k+1

k
xk ∀x ∈ (−1, 1]

This means that limm→∞ S(m) = log(2). Thus, ∀ε > 0, ∃M ∈ N
such that ∀m ≥M, |S(m)− log(2)| < ε. Let’s take ε < 1− log(2)
and its correspondent value of M . For m > M, 0 < S(m) < 1.
We will use this information to prove the series convergence.

∞∑

m=1

S(m)

(2m+ 1)(2m+ 2)
=

M−1∑

m=1

S(m)

(2m+ 1)(2m+ 2)

+
∞∑

m=M

S(m)

(2m+ 1)(2m+ 2)

The first sumatory is a finite sum and thus takes a finite value. As
for the second one, since all the terms are positive, we get

0 <
∞∑

m=M

S(m)

(2m+ 1)(2m+ 2)
<

∞∑

m=M

1

(2m+ 1)(2m+ 2)

<
∞∑

m=M

1

(2m+ 1)2
<

∞∑

m=1

1

m2
=
π2

6

Since the series is bounded and all its terms are positive (therefore
the sequence of partial sums is strictly increasing), by the Mono-
tone Convergence Theorem it must converge. In fact, it’s absolutely
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convergent. Once we have proven the convergence, let’s go back to
the sum and rewrite it in terms of an integral:

∞∑

m=1

S(m)

(2m+ 1)(2m+ 2)
=

∞∑

m=1

S(m)
∫ 1

0
(1− x)x2m dx

We have already proven the absolute convergence of the series,
which is why we can interchange the summatory and integral. We
will also expand S(m) using its definition:

∫ 1

0

∞∑

m=1

(1− x)x2m
m∑

k=1

(−1)k+1

k
=
∫ 1

0

∞∑

m=1

m∑

k=1

(1− x)x2m
(−1)k+1

k
dx

Again, thanks to absolute convergence, we can interchange the
summatories:
∫ 1

0

∞∑

k=1

(−1)k+1

k
(1−x)

∞∑

m=k

x2m dx =
∫ 1

0

∞∑

k=1

(−1)k+1

k
(1−x)

x2k

1− x2
dx

=
∫ 1

0

1

1 + x

∞∑

k=1

(−1)k+1

k
x2k dx =

∫ 1

0

log(1 + x2)

1 + x
dx

We will evaluate this integral using Feynman’s technique. Let’s
define

I(a) =
∫ 1

0

log(1 + ax2)

1 + x
dx =⇒ I ′(a) =

∫ 1

0

x2

(1 + ax2)(1 + x)
dx

=
1

1 + a

ñ∫ 1

0

1

1 + x
dx+

∫ 1

0

x

1 + ax2
dx−

∫ 1

0

1

1 + ax2
dx

ô
Which we get by applying partial fraction decomposition. All of
these integral are direct:

I ′(a) =
log(2)

1 + a
+

log(1 + a)

2a(1 + a)
−

arctan(
√
a)

√
a(1 + a)

Now we can integrate both sides of the equation with respect to
a. The first term integrates directly, and the third term is of the
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form
∫

2uu′ dx for u = arctan(
√
a). We will apply partial fraction

decomposition again to the second term:

1

2

ñ∫ log(1 + a)

a
da−

∫ log(1 + a)

1 + a
da

ô
The second integral is direct. For the first one we will use the
substitution u = −a:

∫ log(1 + a)

a
da = −

Ç
−
∫ log(1− u)

u
du

å
= −Li2(u) = −Li2(−a)

The integral we got was by definition the dilogarithm, Li2(x), which
has the property that its Maclaurin series, valid for |x| ≤ 1, is
Li2(x) =

∑∞
n=1

xn

n2 . This can be easily proven by substituting the
logarithm by its Maclaurin series and interchanging the summatory
and integral. Finally, we get

I(a) = log(2) log(1+a)−
Li2(−a)

2
−

log2(1 + a)

4
−arctan2(

√
a)+C

Where C is a constant of integration. Notice that I(0) = C in
this equation, but using the definition of I(a), we get I(0) = 0.
Thus, C = 0. The final result we want is I(1). Using its Maclaurin
series expansion, Li2(−1) is the alternated sum of the inverses
of squares, a well-known series that yields −π2

12
. Evaluating the

expression, we get

I(1) = log2(2)−
Li2(−1)

2
−

log2(2)

4
− arctan2(1)

=
3

4
log2(2) +

π2

24
−
π2

16
=

3

4
log2(2)−

π2

48

Also solved by Moti Levy, Rehovot, Israel.
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