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A class of combinatorial
identities

Joe Santmyer

Abstract

The proof of a result in complex variables becomes the source
of a class of combinatorial identities. In this case the emer-
gence of an identity was the result of asking a different ques-
tion. A preliminary result leading to the Weierstrass Factor-
ization Theorem needs coefficients of a Taylor expansion to be
non-negative. A question one might ask is exactly what do the
coefficients look like. The answer results in an infinite class of
combinatorial identities.

1 Question

One of the steps to prove the Weierstrass Factorization Theorem is
to establish the inequality

|1− Em(z)| ≤ |z|m+1 if |z| ≤ 1

where

Em(z) =





1− z if m = 0

(1− z)ez+z2

m
+···+zm

m if m = 1, 2, . . .

The function f(z) = 1 − Em(z) is an entire function and hence
has a Taylor expansion

f(z) =
∞∑

n=0

anz
n.
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A proof of the above inequality in [2] establishes the easy equation
∞∑

n=0

an = 1 (1)

since f(1) = 1− Em(1) = 1. That proof only needs the fact that
an ≥ 0 for n ≥ 0. But can a formula for the an be derived?

1.1 Brief Answer

The Weierstrass Factorization Theorem is a result in complex anal-
ysis, an area of mathematics that deals with the continuous and
infinity. What is developed below is of a discrete nature and illus-
trates the interplay between continuous and discrete mathematics.
Many other interesting examples of this can be found in [4].

We begin by considering

f ′(z) = −E′m(z)

= zme

Ä
z+z2

2
+z3

3
+z4

4
+···+zm

m

ä
= zmeh(z) (2)

where h(z) = z + z2

2
+ z3

3
+ z4

4
+ · · ·+ zm

m
. Two series for f ′(z) are

f ′(z) =
∞∑

n=1

nanz
n−1 (3)

f ′(z) =
∞∑

n=0

zm(h(z))n

n!
. (4)

If m = 1 then h(z) = z . If cn represents the coefficents in (4) then
c0 = 0. Equating coefficients in (3) and (4), it is easy to see that
a0 = 0 and

an+1 =
cn

n+ 1
(5)

for n = 0, 1, 2, . . .. Series (4) in this case is

f ′(z) =
∞∑

n=0

zn+1

n!
.
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Using this together with (5) it is straightforward to show that a1 = 0
and

an =
1

n(n− 2)!

for n = 2, 3, . . .. Since
∞∑
n=0

an = 1 then

∞∑

n=2

1

n(n− 2)!
= 1. (6)

Of course (6) can be obtained directly. A formula for the an and
an identity for their sum have been derived when m = 1.

Starting from an equation such as (2) and equating coefficents
is often done to obtain properties of coefficients as in [1] for the
Bernoulli polynomials and numbers, in [3] for series solutions to
differential equations, etc.

2 Complete Answer

Consider the case m ≥ 2. Let k =
⌈
n+m(m−1)

m

⌉
. Let a, b,n ∈ Nm

with a = (1, 1, . . . , 1), b = (0, 1, . . . ,m−1) and n = (n1, n2, . . . , nm)
where a ·n = k−m+j and b ·n = n−k−j for j = 0, 1, . . . , n−k.
Then

cn =
n−k∑

j=0

1

(k −m+ j)!

∑

a·n=k−m+j
b·n=n−k−j

(
k −m+ j

n1 n2 . . . nm

)
m∏

i=1

Ç
1

i

åni
.

The expression for cn is a straightforward application of the multi-
nomial formula. Based on the initial conditions a0 = a1 = 0 when
m = 1, in general we have a0 = a1 = · · · = am = 0. From (1) and
(5) it follows that

1 =
∞∑

n=m

1

n+ 1

n−k∑

j=0

1

(k −m+ j)!

∑

a·n=k−m+j
b·n=n−k−j

(
k −m+ j

n1 n2 . . . nm

)
m∏

i=1

Ç
1

i

åni
.

The above equation represents an infinite class of combinatorial
identities, one for each m ≥ 2.



Volume 10, No. 1, Spring 2023 7

2.1 Applications

Example 1: Lets apply the formula to calculate cn when m = 2.
In this case k =

†
n+2

2

£
, a = (1, 1), b = (0, 1), n = (n1, n2). For

j = 0, 1, . . . , n− k the system of equations has the solution

n = (n1, n2) = (2k + 2j − n− 2, n− k − j).

Consequently

cn =
n−k∑

j=0

1

(k − 2 + j)!

∑

a·n=k−2+j
b·n=n−k−j

Ç
k − 2 + j

n1, n2

å 2∏

i=1

Å
1

i

ãni
=

n−k∑

j=0

1

(k − 2 + j)!

Ç
k − 2 + j

2k + 2j − n− 2 n− k − j

åÅ
1

1

ã2k+2j−n−2Å1
2

ãn−k−j
=

n−k∑

j=0

1

2n−k−j(n− k − j)!(2k + 2j − n− 2)!
.

For m = 2 we have a0 = a1 = a2 = 0. Apply (1) and (5) to get

1 = 0 + 0 + 0 +
∞∑

n=2

cn

n+ 1

1 =
∞∑

n=2

1

n+ 1

n−k∑

j=0

1

2n−k−j(n− k − j)!(2k + 2j − n− 2)!
.

The formula can be simplified with the substitution n−k−j = i−1.
Then

n− i+ 1 = k + j

2n− 2i+ 2 = 2k + 2j

2n− 2i+ 2− n− 2 = 2k + 2j − n− 2

n− 2i = 2k + 2j − n− 2.

This shows that

2n−k−j(n− k − j)!(2k + 2j − n− 2)! = 2n−i(n− i)!(n− 2i)!
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As j ranges from 0 to n−k the value of i ranges from 1 to bn
2
c. Of

course, we must also ensure that the number of terms are equal
in both cases. To show that the number of terms are equal it must
be shown that n− k + 1 =

ö
n
2

ù
where k =

†
n+2

2

£
. The verification

of this is straightforward and left to the reader.

Since the number of terms and the terms themselves are equal the
two sums are equal. That is

bn
2
c∑

i=1

1

2i−1(i− 1)!(n− 2i)!
=

n−k∑

j=0

1

2n−k−j(n− k − j)!(2k + 2j − n− 2)!
.

Consequently

1 =
∞∑

n=2

1

n+ 1

bn
2
c∑

i=1

1

2i−1(i− 1)!(n− 2i)!
.

This is problem 12276 in [6].

Example 2: Consider a sequence of fractions defined as b1 = b2 =
1 and bn =

bn−1+bn−2

n−1
. Show that lim

n→∞
bn = 0.

Mathematica can be used to generate the partial sums for the
series in example 1 and it produces the sequence

{sn} =
ß
1

3
,
7

12
,
47

60
,
161

180
,
601

630
,
9889

10080
,
18013

18144
,
452413

453600
,
2492569

2494800
,
59857681

59875200
, . . .

™
.

The sequence

{dn} = {3, 12, 60, 180, 630, 10080, 18144, 453600, 2494800, 59875200, . . .}

of denominators is essentially sequence OEIS A069944 in the
Online Encyclopedia Integer Sequences. These are denominators
of fractions defined by the recurrence relation bn =

bn−1+bn−2

n−1
with

initial conditions b1 = b2 = 1 which is the given sequence in the
example. The sequence can be generated with Mathematica to
produce

{bn} =
ß
1, 1, 1,

2

3
,
5

12
,
13

60
,
19

180
,
29

630
,

191

10080
,

131

18144
,

1187

453600
,

2231

2494800
,

17519

59875200
, . . .

™
.

The sequence cn = 1− bn is

{cn} =
ß
0, 0, 0,

1

3
,
7

12
,
47

60
,
161

180
,
601

630
,
9889

10080
,
18013

18144
,
452413

453600
,
2492569

2494800
,
59857681

59875200
, . . .

™
.

https://oeis.org/A069944
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Sequences {cn} and {sn} are essentially the same and behave
the same when n→∞. By Example 1 we know that lim

n→∞
sn = 1

so we can conclude that

1 = lim
n→∞

sn

= lim
n→∞

cn

= lim
n→∞

(1− bn)

= 1− lim
n→∞

bn

lim
n→∞

bn = 0.

3 A Second Class of Combinatorial
Identities

Taking the first derivative f ′(z) and equating coefficients produced
the above class of combinatorial identities. Lets repeat the process
with f ′′(z) to get

f ′′(z) =
∞∑

n=2

n(n− 1)anz
n−2

f ′′(z) = [mzm−1 + zm + zm+1 + zm+2 + · · ·+ z2m−1]
∞∑

n=0

(h(z))n

n!
.

Since a0 = a1 = 0 write the first series as

f ′′(z) =
∞∑

n=0

(n+ 2)(n+ 1)an+2z
n

and let cn represent the coefficient of zn in the second series.
Equate coefficients to get

an+2 =
cn

(n+ 2)(n+ 1)
. (7)

Use the multinomial formula. In this case, let kr =
⌈
n+(m−1)(m+r−1)

m

⌉

for r = 0, 1, 2, . . . ,m. Let d0 = m and dr = 1 for r = 1, 2, . . . ,m.
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Vectors a, b,n ∈ Nm are the same as before. Then

cn =
m∑

r=0

n−kr∑

j=0

dr

(kr −m− r + 1 + j)!
×

∑

a·n=kr−m−r+1+j
b·n=n−kr−j

(
kr −m− r + 1 + j

n1 n2 . . . nm

)
m∏

i=1

Ç
1

i

åni
.

The initial conditions are the same, namely a0 = a1 = a2 = · · · =
am = 0. Since 1 =

∞∑
n=0

an we get

1 = am+1+am+2+
∞∑

n=m+1

1

(n+ 2)(n+ 1)

m∑

r=0

n−kr∑

j=0

dr

(kr −m− r + 1 + j)!
×

∑

a·n=kr−m−r+1+j
b·n=n−kr−j

(
kr −m− r + 1 + j

n1 n2 . . . nm

)
m∏

i=1

Ç
1

i

åni
.

That is

1−am+1−am+2 =
∞∑

n=m+1

1

(n+ 2)(n+ 1)

m∑

r=0

n−kr∑

j=0

dr

(kr −m− r + 1 + j)!
×

∑

a·n=kr−m+1−r+j
b·n=n−kr−j

(
kr −m− r + 1 + j

n1 n2 . . . nm

)
m∏

i=1

Ç
1

i

åni
.

The above equation represents a class of identities, one for each
m ≥ 2.

3.1 Applications

Example 3: Lets apply the formula in the case m = 2. We have
kr = dn+r+1

2
e for r = 0, 1, 2. Also, d0 = 2 and d1 = d2 = 1. The

system of equations

a · n = kr − 1− r + j

b · n = n− kr − j
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has the solution n = (2kr+2j−n−r−1, n−kr−j). Consequently

cn =
2∑

r=0

n−kr∑

j=0

dr

(kr − 1− r + j)!

Ç
kr − 1− r + j

2kr + 2j − n− r − 1 n− kr − j

åÅ
1

2

ãn−kr−j

=
2∑

r=0

n−kr∑

j=0

dr

2n−kr−j(n− kr − j)!(2kr + 2j − n− r − 1)!
.

It is easy to see that c0 = 0, c1 = 2, c2 = 3. For n ≥ 3 the value
of cn is calculated using the above equation. Equating coefficients
we have a3 = 1

3
and a4 = 1

4
. For n ≥ 5 use (7) to calculate an .

Consequently, 1− 1
3
− 1

4
= 5

12
and we get

5

12
=

∞∑

n=3

1

(n+ 2)(n+ 1)




2∑

r=0

n−kr∑

j=0

dr

2n−kr−j(n− kr − j)!(2kr + 2j − n− r − 1)!


.

Of course, we can begin the series at n = 1 to get

1 =
∞∑

n=1

1

(n+ 2)(n+ 1)




2∑

r=0

n−kr∑

j=0

dr

2n−kr−j(n− kr − j)!(2kr + 2j − n− r − 1)!


.

The formula can be simplified with the substitution i − 1 =
n− kr − j to get

1 =
∞∑

n=1

1

(n+ 2)(n+ 1)




2∑

r=0

n−kr+1∑

i=1

dr

2i−1(i− 1)!(n− 2i− r + 1)!


.

Example 4: Show that for N ≥ 2 we have

N∑

n=2

1

n+ 1

bn
2
c∑

i=1

1

2i−1(i− 1)!(n− 2i)!

=
N−1∑

n=1

1

(n+ 2)(n+ 1)




2∑

r=0

n−kr+1∑

i=1

dr

2i−1(i− 1)!(n− 2i− r + 1)!




where kr and dr are defined as in Example 3.

Mathematica can be used to generate the partial sums for the
series in example 3 and it produces the sequence

sn =

ß
1

3
,
7

12
,
47

60
,
161

180
,
601

630
,
9889

10080
,
18013

18144
,
452413

453600
,
2492569

2494800
,
59857681

59875200
, . . .

™
.

This is exactly the same sequence of partial sums for the series in
example 1 and the equation follows.
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4 Closing Remarks

What do the identities look like for m = 3? The author attempted
this case but could not obtain a simple closed form solution. Ex-
ample 4 shows that the second class of identities based on the
second derivative f ′′(z) produced that same class using the first
derivative f ′(z). Consequently, taking higher order derivatives
does not produce anything new. What it does is represent the
identities in a different form. A search in [5] did not find the sums
and series that appear here.
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Some relations between the
tangent lengths of a

bicentric quadrilateral

Marius Drăgan and Mihály Bencze

Abstract

In this paper new identities and inequalities for a bicentric
quadrilateral are given.

1 Introduction

The purpose of this work is to give some new identities and inequal-
ities involving the sides a, b, c, d, the inradius r and circumradius
R, the semiperimeter s and the tangent lengths t1, t2, t3, t4 of a
bicentric quadrilateral. A good source where many inequalities (in
particular geometric inequalities) are published is Octogon Mathe-
matical Magazine (2000-2022).

In what follows we will call the distances from the vertices of
quadrilateral ABCD to the points of the tangency of the sides
with C(I, r) the tangent lengths. Let us denote by M,N,P,Q the
points where the sides AB , BC , CD , DA touch the circle C(I, r).
Also, we denote the tangent lengths with AM = t1 , BN = t2 ,
CP = t3 , DQ = t4 .

We begin with the following

Lemma 1. In every bicentric quadrilateral ABCD , with the usual
notations, the following identities hold:
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(i) t1 + t2 + t3 + t4 = s.
(ii) t1t2 + t2t3 + t3t4 + t4t1 = 2r

Ä√
4R2 + r2 − r

ä
.

(iii)
∑

1≤i<j≤4
titj = 2r

√
4R2 + r2 .

(iv)
∑

1≤i<j<k≤4
titjtk = r2s.

(v) t1t2t3t4 = r4 .

Proof. Next, we give the proof of the identities claimed.

(i) We have t1 +t2 = a, t2 +t3 = b, t3 +t4 = c, t4 +t1 = d. Adding
up these equalities the statement follows.

(ii) Using tan
A

2
=
MI

AM
=

√
ad

bc
we obtain

r

t1
=

√
ad

bc
or

t1 = r

√
bc

ad
, t2 = r

√
cd

ba
, t3 = r

√
ad

bc
, t4 = r

√
ab

cd
.

So

t1t2 + t2t3 + t3t4 + t4t1 = r2

Ç
a

c
+
b

d
+
c

a
+
d

b

å
= r2

(
(a+ c)2

ac
− 2 +

(b+ d)2

bd
− 2

)
= r2

Ç
s2
ac+ bd

abcd
− 4

å
= r2

Ç
ac+ bd

r2
− 4

å
= r2

(
ac+ bd− 4r2

r2

)

= ac+ bd− 4r2 = 2r
»

4R2 + r2 − 2r2.
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(iii) We have t1t3 = t2t4 = r2 . So from (ii) we have

∑

1≤i<j≤4

titj = 2r
»

4R2 + r2 − 2r2 + 2r2 = 2r
»

4R2 + r2.

(iv) We have

∑

1≤i<j≤4

titjtk = r2

Ñ√
ab

cd
+

√
cb

da
+

√
dc

ab
+

√
ad

bc

é
= r3

Ç
ab+ dc
√
abcd

+
bc+ ad
√
abcd

å
= r3

ab+ dc+ bc+ ad

rs
= r2s.

(v) Since t1t3 = t2t4 = r2 then t1t2t3t4 = r4 .

2 Main results

We now present the main results of this work.

Theorem 1. Let ABCD be a bicentric quadrilateral. Then t1, t2, t3, t4
are the roots of a four degree equation with the coefficient depend-
ing only on a, b, c, d.

Proof. Recall that t1, t2, t3, t4 are the roots of the quartic equation
t4 − σ1t

3 + σ2t
2 − σ3t + σ4 = 0, where according to the Lemma

σ1 = s and σ2 = 2r
√

4R2 + r2 . Since ac+bd = 2r
√

4R2 + r2+2r2

then σ2 = ac + bd − 2r2 − ac + bd −
2abcd

s2
, σ3 = r2s =

abcd

s
,

σ4 = 4r4 =
4a2b2c2d2

s4
, and therefore σ1, σ2, σ3, σ4 depend only on

a, b, c, d. Then, we may write the equation as

t4 −
a+ b+ c+ d

2
t3 +

(
ac+ bd−

8abcd

(a+ b+ c+ d)2

)
t2

−
2abcd

a+ b+ c+ d
t+

16a2b2c2d2

(a+ b+ c+ d)4 = 0

which roots are t1, t2, t3, t4 .
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Theorem 2. Let ABCD be a bicentric quadrilateral. Then t1, t2, t3, t4
are the roots of a four degree equation with coefficients depending
only on R, r and s.

Proof. From lemma we have

t4 − st3 + 2r
»

4R2 + r2t2 − r2st+ r4 = 0

which roots are t1, t2, t3, t4 .

Corollary 1. Let ABCD be a bicentric quadrilateral. Then t1, t3
are the roots of the equation st2 − x1t + sr2 = 0 and t2, t4 are the
roots of the equation st2 − x2t+ sr2 = 0.

Proof. We have
t21
r2

=
bc

ad
or

t21 + r2

r2
=
x1

ad
. Also

t21 + r2

t21
=
x1

bc
.

Multiplying up these two equalities, we obtain
(
t21 + r2

rt1

)2

=

(
x1

sr

)2

⇔ (t21 + r2)s = x1t⇔ st21 − x1t1 + r2s = 0.

Likewise, we get st23 − x1t3 + r2s = 0, st22 − x2t2 + r2s = 0, and
st24 − x2t4 + r2s = 0.

Corollary 2. In every bicentric quadrilateral the following equality
holds:

t4 − st3 + 2r
»

4R2 + r2 t2 − r2st+ r4

=
Å
t2 −

x1

s
t+ r2

ãÅ
t2 −

x2

s
t+ r2

ã
.

Proof. We haveÅ
t2 −

x1

s
t+ r2

ãÅ
t2 −

x2

s
t+ r2

ã
= t4 −

Ç
x1 + x2

s

å
t3 +

Å
2r2 +

x1x2

s2

ã
t2 −

r2

s
(x1 + x2)t+ r4

= t4 − st3 +

Ñ
2r2 +

16R2r2

2r
Ä√

4R2 + r2 + r
äét2 − r2st+ r4

= t4 − st3 + 2r
»

4R2 + r2 t2 − r2st+ r4.
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Solving the equations in Corollary 1 we may write t1, t2, t3, t4 in
terms of x1, x2, r .

Corollary 3. In every bicentric quadrilateral we have

{t1, t3} =
x1 ±

»
x2

1 − 4r2s2

2s
and {t1, t3} =




x2 ±

»
x2

2 − 4r2s2

2s



.

Proof. It follows from Corollary 1.

Note that, since x1 = ab+ cd, x2 = ac+ bd, then t1, t2, t3, t4 can
be expressed in terms of a, b, c, d.

Corollary 4. In every bicentric quadrilateral it holds:

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2

= (t1 − t3)4(t2 − t4)4
î
(t1 − t3)2 − (t2 − t4)2

ó
.

Proof. Since a = t1 + t2 , b = t2 + t3 , c = t3 + t4 , d = t4 + t1 , then

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2

=(t1−t3)2(t1+ t2−t3−t4)(t2−t4)2

(t2−t4)2(t2+ t3−t1−t4)2(t3−t1)2

=(t1 − t3)4(t2 − t4)4
î
(t1 − t3)2 − (t2 − t4)2

ó2
.

In the following we will write t1, t2, t3, t4 using only a, b, c, d.

Corollary 5. In every bicentric quadrilateral the following holds:

t1 =
bc

s
, t2 =

cd

s
, t3 =

da

s
, t4 =

ab

s
.

Proof. We have

t1 = r

√
bc

ad
=
F

s

√
bc

ad
=

√
abcd

s

√
bc

ad
=
bc

s
.

In the same way we get t2, t3 and t4 .
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In [3] was published Blundon-Eddy’s inequality for bicentric quadri-
laterals. It also was proven in [1] and [2] using algebraic and
geometric arguments. This inequality claims that in any bicen-
tric quadrilateral ABCD it holds that s1 ≤ s ≤ s2 , where s1 =»

8r (
√

4R2 + r2 − r) and s2 =
√

4R2 + r2 + r . In the next corol-
lary we give a new prove of this result. Other sources of this kind
of results are [5] and [4].

Corollary 6. In every bicentric quadrilateral the following identity
holds:

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2

= 16s2r4
ï(»

4R2 + r2
)2
− s2

ò[
s2 − 8r

(»
4R2 + r2 − r

)]
.

Proof. We compute

s8(t1 − t3)4(t2 − t3)4 = (ad− bc)4(ab− dc)4

=
î
(ad+ bc)2 − 4abcd

ó2î
(ab+ dc)2 − 4abcd

ó2
=
î
(x2

1 − 4F )2(x2
2 − 4F )2

ó2
=
î
(x1x2)2 − 4F 2(x2

1 + x2
2) + 16F 4

ó2
=
[
4r2

Ä»
4R2+r2−r

ä2
s4−4s6r2+16s4r3

Ä»
4R2+r2−r

ä
+16s4r4

]2

= 42s8r4
[Ä»

4R2 + r2 − r
ä2 − s2 + 4r

Ä»
4R2 + r2 − r

ä
+ 4r2

]

= 42r4s8
[Ä»

4R2 + r2 + r
ä2 − s2

]2
.

Also

s4
î
(t1 − t3)2 − (t2 − t4)2

ó2
=
î
(ad− bc)2 − (ab− cd)2

ó2
=
î
(ad+ bc)2 − 4abcd− (ab+ cd)2 + 4abcd

ó2
= (x2

1 − x
2
2)2

=(x2
1 + x2

2)2 − 4x2
1x

2
2 =

î
(x1 + x2)2 − 2x1x2

ó2 − 4x2
1x

2
2

=(s4 − 2x1x2)2 − 4x2
1x

2
2 = s8 − 4s4x1x2

=s4
[
s4 − 8r

Ä»
4R2 + r2 − r

ä
s2
]

=s6
[
s2 − 8r

Ä»
4R2 + r2 − r

ä]
. (1)

We obtain

(t1 − t3)4(t2 − t4)4 = 16r4
ï(»

4R2 + r2 + r
)2
− s2

ò2
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and î
(t1 − t3)2 − (t2 − t4)2

ó
= s2

[
s2 − 8r

(»
4R2 + r2 − r

)]
.

From (1) and Corollary 4 we obtain the statement.

Let M = AB ∩ C(I, r). We have

Lemma 2. Let ABCD be a bicentric quadrilateral. Then

MO =

Ã
R2 −

bc2d

s2
.

Proof. We have R2 −MO2 = t1t2 or MO =

√

R2 −
bc2d

s2
.

Corollary 7. In every bicentric quadrilateral it holds:

MO2 +NO2 + PO2 +QO2 =
(»

4R2 + r2 − r
)2

.

Proof From the preceding, we have

MO2 +NO2 + PO2 +QO2 = 4R2 −
(
a2bd

s2
+
ab2c

s2
+
bc2d

s2
+
ad2c

s2

)

= 4R2−
ac(b2+d2)+ bd(a2+c2)

s2
= 4R2−

ac(s2−2bd)+ bd(s2−2ac)

s2

= 4R2 −
s2(ac+ bd)− 4abcd

s2
= 4R2 − ac− bd+ 4r2

= 4R2 − 2r
»

4R2 + r2 − 2r2 + 4r2 =
(»

4R2 + r2 − r
)2
.

To prove the next theorem we need the following lemma:

Lemma 3. In every bicentric quadrilateral it holds:»
4R2 − a2+

»
4R2−b2+

»
4R2−c2+

»
4R2 − d2 = 2

»
4R2+r2 +2r
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Proof. Let OU ⊥ AB , OV ⊥ BC , OW ⊥ DC , OT ⊥ AD .

We denote OU = x, OV = y , OW = z , OT = t, BD = d1 , AC =

d2 , UT = VW =
d1

2
, UV = TW =

d2

2
, OA = OB = OC =

OD = R. From Ptolemy’s theorem applied to cyclic quadrilaterals

AUOT , BUOV , CV OW , OTDW , we have
xd

2
+
at

2
=

d1R

2
,

xb

2
+
ya

2
=
d2R

2
,
zb

2
+
yc

2
=
d1R

2
,
zd

2
+
ct

2
=
d2R

2
. Adding these

equalities we obtain

x(b+ d) + y(a+ c) + z(b+ d) + t(a+ c) = 2R(d1 + d2)

or x + y + z + t =
2R(d1 + d2)

s
. Let us denote by α = d1 + d2 .

Then from Ptolemy theorem, we have
d1

d2

=
x2

x1

and d1d2 = x3 =

2r
Ä√

4R2 + r2 + r
ä
. So

d1

α
=
x2

s2
and

d2

α
=
x1

s2
.

By multiplying we obtain
d1d2

α2
=
x1x2

s4
. But x1x2 =

16R2r2s2

x3

.

We obtain
x3

α2
=

16R2r2

x3s2
or α =

x3s

4Rr
.

So we obtain x+ y + z + t =
√

4R2 + r2 + r .
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But x =
1

2

√
4R2 − a2 . So

1

2

∑
cyc

√
4R2 − a2 =

√
4R2 + r + r or

∑

cyc

»
4R2 − a2 = 2

»
4R2 + r2 + 2r. (2)

This completes the proof.

Theorem 3 (Fuss). In every bicentric quadrilateral the following
equality holds: d2

= R2 + r2 − r
√

4R2 + r2 .

Proof. On account to Sine Law applied to triangle MOA, we have
R

sinα
=

a

sin(π − 2α)
or cosα =

a

2R
.

From Sine Law applied to triangle MOB we have
BO

sinβ
=
MO

sinα
or

sinβ =
BO

MO
sinα =

R

MO

√

1−
a2

4R2
=

1

2MO

»
4R2 − a2.

We have

cos γ = cos
Åπ

2
− β

ã
= sinβ =

1

2MO

»
4R2 − a2.
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From Cosine Law applied to triangle MIO , we get

d
2
= MI2 +MO2−2MIMO cos γ= r2 +R2−

bc2d

s2
−r

»
4R2−a2.

In the same way, we obtain

d
2

= R2 + r2 −
ad2c

s2
− r

»
4R2 − b2

d
2

= R2 + r2 −
ba2d

s2
− r

»
4R2 − c2 and

d
2

= R2 + r2 −
cd2a

s2
− r

»
4R2 − d2

Adding up the preceding, yields

4d
2

= 4R2 + 4r2 −
1

s2
(a2bd+ bc2d+ ad2c+ ab2c)

−r
(»

4R2 − a2 +
»

4R2 − b2 +
»

4R2 − c2 +
»

4R2 − d2
)

(3)

We have
1

s2
(a2bd+ bc2d+ ad2c+ ab2d) =

1

s2

î
(a2 + c2)bd+ (b2 + d2)ac

ó
=

1

s2
(s2(ac+ bd)− 4s2r2) = ac+ bd− 4r2 (4)

On account of the previous lemma, we have

4d
2

= 4R2+4r2−2r
»

4R2 + r2−2r2+4r2−2r
»

4R2 + r2−2r2 or

4d
2

= 4R2 + 4r2 − 4r
»

4R2 + r2

from which
d

2
= R2 + r2 − r

»
4R2 + r2

follows.

Corollary 8. Let M,N,P,Q be the points where AB,BC,CD,DA
cut C(I, r). Then

MN = 2r

√
t2

t2 + t4
, NP = 2r

√
t3

t1 + t3
,

PQ = 2r

√
t4

t2 + t4
, MQ = 2r

√
t1

t1 + t3
.
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Proof. We have AI =
r

sin A
2

. As AMIQ is cyclic, by Ptolemy’s

theorem we get AM ·QI+MI ·AQ = MQ·AI or MQ·AI = 2t1r ,
or

MQ =
2t1r

r/ sin A
2

= 2t1 sin
A

2
= 2t1

Ã
ad

ad+ bc

= 2t1

√
t3

t1 + t3
= 2
√
t1t3

√
t1

t1 + t3
= 2r

√
t1

t1 + t3

Corollary 9. In every bicentric quadrilateral, with the notation from
above it holds MP ⊥ QN .

Proof. From Corollary 8 we have MQ2 +NP 2 = MN2 +QP 2 . So
MNPQ is orthodiagonal.

Corollary 10. In every bicentric quadrilateral, it holds:

MN ·NP · PQ ·QM =
2r5

Ä√
4R2 + r2 + r

ä
R2

.

Proof. From Corollary 8, we have

MN ·NP · PQ ·QN =
16
√
t1t2t3t4r

4

(t1 + t3)(t2 + t4)
=

16r5

2r
Ä√

4R2 + r2 − r
ä

=
2r5

R2

(»
4R2 + r2 + r

)
.

Corollary 11. In every bicentric quadrilateral the following inequal-
ity holds:

4r

Ã
1 +

√
2r

√
4R2 + r2 − r

≤MN +NP + PQ+QM ≤

≤
r
Ä√

4R2 + r2 + 2
√

2R+ r
ä

2
≤ 4
√

2 r.

Proof. According to Corollary 8 we have f : [s1, s2]→ R,

f(s) = MN +NP + PQ+QM
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= 2r

(√
t2

t2 + t4
+

√
t4

t2 + t4
+

√
t1

t1 + t3
+

√
t3

t1 + t3

)

= 2r

Ñ√
ab+

√
cd

√
ab+ cd

+

√
ad+

√
bc

√
ad+ bc

é
= 2r

(√
x1 + 2sr

x1

+

√
x2 + 2sr

x2

)

= 2r

Õ
2 +

2sr(x1 + x2)

x1x2

+ 2

Ã
x1x2 + 2sr(x1 + x2) + 4s2r2

x1x2

= 2r

Ã
2 +

2sr s2 x3

16R2r2s2
+ 2

√

1 +
2sr s2 x3

16R2r2s2
+

4s2r2x3

16R2r2s2

= 2r

√

2 +
sx3

8R2r
+ 2

 
1 +

sx3

8R2r
+

x3

4R2
,

which is increasing in s. So, f(s1) ≤ f(s) ≤ f(s2) or

M1N1 +N1P1 + P1Q1 +Q1M1 ≤MN +NP + PQ+QN

≤M2N2 +N2P2 + P2Q2 +Q2M2,

where M1, N1, P1, Q1 are the intersection points of the incircle
with the sides of A1B1C1D1 and M2, N2, P2, Q2 the intersection
points of the sides A2B2C2D2 with incircle C(I, r) on account of
Blundon theorem. We have

M1N1+N1P1+P1Q1+Q1M1 = 2r

(√
a1b1 +

√
c1d1√

a1b1 + c1d1

+

√
a1d1 +

√
b1c1√

a1d1 + b1c1

)

From Blundon-Eddy theorem we have

a1 = c1 =
»
R2 − (r − d)2 +

»
R2 − (r + d)2

b1 = 2
»
R2 − (r − d)2, d1 = 2

»
R2 − (r + d)2

So

M1N1 +N1P1 + P1Q1 +Q1M1 = 2

√
b1+
√
d1√

b1+d1

= 2

Ã
b1+d1 + 2

√
b1d1

b1+d1

= 2

Ã
1+

2
√

4r2

s1

=2

Ã
1+

4r
√

8r
Ä√

4R2 + r2 − r
ä=2

Ã
1+

√
2r

√
4R2+r2
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Also

M2N2+N2P2+P2Q2+Q2M2 = 2r

(√
a2b2 +

√
c2d2√

a2b2 + c2d2

+

√
a2d2 +

√
b2c2√

a2d2 + b2c2

)
.

From Blundon theorem we have

a2 = b2 =
2R

R+ d

»
(R+ d)2 − r2 , c2 = d2 =

2R

R− d
»

(R− d)2 − r2

So

M2N2 +N2P2 + P2Q2 +Q2M2

=
a2 + c2»
a2

2 + c2
2

+
√

2 =
a2 + c2»

(a2 + c2)2 − 2a2c2

=
s2√

s2
2 −

16R2r2

R2−d2
.

We have

a2c2 =
4R2

R2 − d2

»
[(R+ d)2 − r2][(R− d)2 − r2]

=
4R2

R2 − d2

»
[(R− r)2 − d2][(R+ r)2 − d2]

=
4R2

R2−d2

…(
r
»

4R2+ r2− 2Rr
)(
r
»

4R2+ r2 + 2Rr
)

=
4R2r2

R2−d2
.

So

M2N2+N2P2+P2Q2+Q2M2 =

√
4R2+r2 + r…Ä√

4R2+r2 + r
ä2 − 8R2r2

R2−d2

+
√

2.

We have
(»

4R2 + r2 + r
)2
−

82r2

R2 − d2

= 4R2 + 2r2 + 2r
»

4R2 + r2 −
8R2r2

r
Ä√

4R2 + r2 − r
ä

= 4R2 + 2r2 + 2r
»

4R2 + r2 − 2r
(»

4R2 + r2 + r
)

= 4R2.

We obtain

M2N2 +N2P2 + P2Q2 +Q2M2 =

Ä√
4R2 + r2 + r + 2

√
2R

ä
r

R
.
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Corollary 12. In every bicentric quadrilateral the following inequal-
ity is true:

MN +NP + PQ+QM ≥
8r2

R

Proof. From Corollary 11, if we denote
R

r
= x ≥

√
x, it will be

sufficient to prove thatÃ
1 +

√
2

√
4x2 + 1− 1

≥
2

x
or x2 + x2

√
2

√
4x2 + 1− 1

≥ 4,

or

x2

√
2

√
4x2 + 1− 1

≥ 4− x2. (5)

If x ≥
√

2 the inequality is true.
We will prove that inequality (5) is true for each

√
2 ≤ x ≤ 2.

If we denote x2 = y , we will prove that y

Ã
2

√
4y + 1− 1

≥ 4 − y ,

for all y ∈ [2, 4] or 2y2 ≥ (4 − y)2
√

4y + 1 − (4 − y)2 , for all y ∈
[2, 4], or 3y2 − 8y + 16)2 ≥ (4 − y)4(4y + 1), for all y ∈ [2, 4], or
(y−2)(y3−16y2 +72y−128) ≤ 0, for all y ∈ [2, 4], or y3−16y2 +
72y − 128 ≤ 0, for all y ∈ [2, 4]. Since y3 − 16y2 + 72y − 128 = 0
has only the real root y0 ' 10, 148 and f : R→ R is an increasing
function, it follows that f(y) ≤ 0, for all y ∈ [2, 4].

Corollary 13. In every bicentric quadrilateral the following inequal-
ity is true:

32r4
Ä√

4R2 + r2 − 2r
ä

√
4R2 + r2 − r

≥MN4 +NP 4 + PQ4 +QM4 ≥

≥
r4
Ä
24R4 − 8R2r2 − 4r4 − 4r3

√
4R2 + r2

ä
R4
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Proof. From Corollary 8 we have f : [s1, s2]→ R

f(s) = MN4 +NP 4 + PQ4 +QM4 = 16r4

[
t21 + t23

(t1 + t3)2
+

t22 + t24
(t2 + t4)2

]

= 16r4

[ ad
bc

+ bc
ad

ad
bc

+ bc
ad

+ 2
+

ab
cd

+ cd
ab

ab
cd

+ cd
ab

+ 2

]

= 16r4

[
(ad+ bc)2 − 2abcd

(ad+ bc)2
+

(ab+ cd)2 − 2abcd

(ab+ dc)2

]

= 16r4

(
x2

1 − 2r2s2

x2
1

+
x2

2 − 2r2s2

x2
2

)
= 16r4

(
2−

2r2s2(x2
1 + x2

2)

x2
1x

2
2

)

= 16r4

[
2−

2r2s2(s4−2x1x2)

x2
1x

2
2

]
=16r4


2−

2r2s2
(
s4 − 32R2r2s2

x3

)

256R2r2s2

x2
3




= 16r4

[
2−

x3(x3s
4 − 32R2r2s2)

128R2

]
.

From Blundon-Eddy inequality we have

x3s
2 ≥ x3 · 8r

(»
4R2 + r2 − r

)

= 16r2
(»

4R2 + r2 + r
)(»

4R2 + r2 − r
)

= 64R2r2 ≥ 32R2r2,

or x3s
2 > 32R2r2 .

So, if we consider the function g : [s1, s2]→ R, defined by

g(s) = x3s
4 − 32R2r2s2 = s2(x3s

2 − 32R2r2),

then g is an increasing function because it is a product of two
positive increasing functions.

It follows that f : [s1, s2] → R, f(s) = 16r4

Ç
2 −

x3g(s)

128R2

å
is a

decreasing function on [s1, s2], or f(s2) ≤ f(s) ≤ f(s1), for all
s ∈ [s1, s2], or

M1N
4
1 +N1P

4
1 + P1Q

4
1 +Q1M

4
1 ≥MN4 +NP 4 + PQ4 +QM4 ≥

≥M2N
4
2 +N2P

4
2 + P2Q

4
2 +Q2M

4
2 .
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We have

M1N
4
1 +N1P

4
1 + P1Q

4
1 +Q1M

4
1

= 16r4

(
a2

1d
2
1 + b2

1c
2
1

(a1d1 + b1c1)2
+

a2
1b

2
1 + c2

1d
2
1

(a1b1 + c1d1)2

)

32r4
b2

1 + d2
1

(b1 + d1)2
± 32r4

(b1 + d1)2 − 2b1d1

(b1 + d1)2
= 32r4

s2
1 − 8r2

s2
1

=
32r4

Ä
8r
Ä√

4R2 + r2 − r
ä
− 8r2

ä
8r
Ä√

4R2 + r2 − r
ä =

32r4
Ä√

4R2 + r2 − 2r
ä

√
4R2 + r2 − r

.

Also

M1N
4
1 +N1P

4
1 + P1Q

4
1 +Q1M

4
1

= 16r4

(
a2

2d
2
2 + b2

2c
2
2

(a2d2 + b2c2)2
+

a2
2b

2
2 + c2

2d
2
2

(a2b2 + c2d2)2

)

= 16r4

(
2a2

2c
2
2

4a2
2c

2
2

+
a4

2 + c4
2

(a2
2 + c2

2)2

)
= 16r4

(
1

2
+

a4
2 + c4

2

(a2
2 + c2

2)2

)
.

We have a2 + c2 = s2 =
√

4R2 + r2 + r . Also

a2c2 =
4R2r2

R2 − d2
= r

(»
4R2 + r2 + r

)
.

We have

a2
2 + c2

2 = (a2 + c2)2 − 2a2c2

=
(»

4R2 + r2 + r
)2
− 2r

(»
4R2 + r2 + r

)

=
(»

4R2 + r2 + r
)(»

4R2 + r2 − r
)

= 4R2.

Also

a4
2 + c4

2 = (a2
2 + c2

2)2 − 2a2
2c

2
2 = 16R4 − 2r2

(»
4R2 + r2 + r

)2

= 16R4 − 8R2r2 − 4r4 − 4r3
»

4R2 + r2.
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So

M2N
4
2 +N2P

4
2 + P2Q

4
2 +Q2M

4
2

= 16r4

Ñ
1

2
+

16R4 − 8R2r2 − 4r4 − 4r3
√

4R2 + r2

16R4

é
= r4

24R4 − 8R2r2 − 4r4 − 4r3
√

4R2 + r2

R4
,

from which we obtain the statement.

Corollary 14. In every bicentric quadrilateral the following inequal-
ity is true:

16r4 ≤MN4 +NP 4 + PQ4 +QM4 ≤ 8R2r2

Proof. From Corollary 13 it results that we have to prove

MN4 +NP 4 + PQ4 +QM4 ≥ 16r4.

if we denote x =
R

r
≥
√

2. It will be sufficient to prove that,

24x4 − 8x2 − 4
√

4x2 + 1

x4
≥ 16, for all x ≥

√
2

or (2x4−2x2−1)2 ≥ 4x2 +1, for all x ≥
√

2, or 4x6(x2−2) ≥ 0,
which is true.
The RHS of the inequality of the statement is equivalent, using
Corollary 13, to 32

Ä√
4x2 + 1− 2

ä
≤ 8x2

Ä√
4x2 + 1− 1

ä
or

(x2 − 4)
√

4x2 + 1 ≥ x2 − 8, for all x ≥
√

2.

If 4 ≤ x2 ≤ 8, the inequality is true. If 2 ≤ x2 ≤ 4, the inequality
is equivalent (if we denote x2 = y ) to
(8− y)2 ≥ (4− y)2(4y+ 1), for all y ∈ [2, 4], or (y− 2)(y2− 6y+
6) ≤ 0, for all y ∈ [2, 4], or y2− 6y+ 6 ≤ 0, or y ∈

î
3−
√

3, 3 +√
3
ó
. If x2 ≥ 8 the inequality is equivalent to (y − 4)2(4x2 + 1) ≥

(y− 8)2 , for all y ≥ 8, or (y− 2)(y2− 6y+ 6) ≥ 0, which is true
since y ≥ 8. Now, we refine RHS of the previous inequality.
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Corollary 15. In every bicentric quadrilateral the following inequal-
ity is true:

MN4 +NP 4 + PQ4 +QM4 ≤ 4
√

213
√
R3
√
r.

Proof. In the same way as in Corollary 14, to prove the inequality
from statement, it will be sufficient to prove that

32
(»

4x2 + 1− 2
)
≤ 4
√

213
√
x3
(»

4x2 + 1− 1
)
, for all x ≥

√
2 ,

which can be verified using a Computer System Algebra like
Wolphram Alpha.

We finish the paper with a proof of th efollowing result.

Theorem 4 (Blundon-Eddy). In every bicentric quadrilateral the
following inequality holds:…

8r
(»

4R2 + r2 − r
)
≤ s ≤

»
4R2 + r2 + r.

Proof. On account of Lemma 1, the LHS of the inequality us-
ing the equalities s = t1 + t2 + t3 + t4 and (t1 + t3)(t2 + t4) =
2r
Ä√

4R2 + r2 − r
ä
, is equivalent to 4(t1 + t3)(t2 + t4) ≤ (t1 + t3 +

t2 + t4) which is true according to AM-GM inequality. Also»
4R2 + r2 − r =

(t1 + t3)(t2 + t4)

2r

or »
4R2 + r2 + r =

(t1 + t3)(t2 + t4)

2r
+ 2r

or, since r = 4
√
t1t2t3t4 , we have»

4R2 + r2 + r =
(t1 + t3)(t2 + t4)

2 4
√
t1t2t3t4

+ 2 4
√
t1t2t3t4.

So the RHS of the inequality is equivalent to

2 4
√
t1t2t3t4(t1 + t2 + t3 + t4) ≤ (t1 + t3)(t2 + t4) + 4

√
t1t2t3t4
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or, since t1t3 = t2t4 ,

2
√
t1t3

Ç
t1 + t2 + t3 +

t1t3

t2

å
≤ (t1 + t3)

Ç
t3 +

t1t3

t2

å
+ 4t1t3

or

2
√
t1t3

î
t1t3 + t22 + t2(t1 + t3)

ó
≤ (t1 + t3)(t22 + t1t3) + 4t1t3t2.

If we denote x = t2 , y = t1 + t3 , z =
√
t1t3 , we obtain

2z(x2 + xy + z2) ≤ y(x2 + z2) + 4z2x

or (y − 2z)(x2 + z2 − xz) ≥ 0, which is true because on account
of AM-GM inequality t1 + t3 ≥ 2

√
t1t3 and y ≥ 2z .
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Problems
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical problems. Proposals
are always welcome. Please observe the following guidelines when
submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on
separate sheets, each indicating the name and address of the
sender. Drawings must be suitable for reproduction.

2. Proposals should be accompanied by solutions. An asterisk (*)
indicates that neither the proposer nor the editor has supplied
a solution.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

The section is divided into four subsections: Elementary Problems,
Easy–Medium High School Problems, Medium–Hard High School
Problems, and Advanced Problems mainly for undergraduates.
Proposals that appeared in Math Contests around the world and
most appropriate for Math Olympiads training are always welcome.
The source of these proposals will appear when the solutions are
published.

Solutions to the problems stated in this issue should be posted
before

October 30, 2023
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Elementary Problems

E–113. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
For every positive integer n we define an as the last digit of the
sum of the first n positive integers. Compute a1 + a2 + · · ·+ a2023 .

E–114. Proposed by Miguel Amengual Covas, Cala Figuera, Ma-
llorca, Spain. Let P , Q, R be points on the sides of a triangle
ABC which trisect the perimeter of 4ABC . Suppose that P , Q
lie on side AB . Prove that

Area (4PQR)

Area (4ABC)
>

2

9
.

E–115. Proposed by Goran Conar, Varaždin, Croatia. Let da, db, dc
be distances from center of circumcircle to the sides of triangle
ABC and let r be radius of its incircle. Prove that for any real
p > 1, it holds

dpa + dpb + dpc ≥ 3rp.

E–116. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Let n ≥ 0 be an integer number. Prove that N = 10n

3+3n2+2n+2

can be written as a sum of four perfect cubes.

E–117. Proposed by Mihaela Berindeanu, Bucharest. Let ABCD
be a square. If X is the midpoint of the side AB, Y is taken on
the extension of side AB , so that BY = AB/3, Z is the foot of
the perpendicular drawn from X to DY and T is the midpoint of
AZ , then show that ∠TBA = ∠DBZ .

E–118. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
Determine the integers n ≥ 0 for which there exists a real number
a > 0 such that

(a+11)n+(a+13)n+(a+17)n = (a+12)n+(a+14)n+(a+15)n.
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Easy–Medium Problems

EM–113. Proposed by José Luis Díaz-Barrero, Barcelona, Spain.
The equation x3 +Ax−B = 0 has three real roots a, b, c. Deter-
mine the integers A and B with AB < 0 for which a6 + b6 + c6 =
277.

EM–114. Proposed by Michel Bataille, Rouen, France. Let P be
a point on the circumcircle of the triangle ABC and let A′, B′, C′

be its orthogonal projections onto the lines BC,CA,AB, respec-
tively. Prove that

B′C′2 cotA+ C′A′2 cotB +A′B′2 cotC

BC2 cotA+ CA2 cotB +AB2 cotC
=

1

2
.

EM–115. Proposed by Toyesh Prakash Sharma (Student) Agra
College, Agra, India. Show that for any n ≥ 1, it holds that

Fn
1
Fn

Ç
1

Fn

åFn
+ Ln

1
Ln

Ç
1

Ln

åLn
≥ 2Fn+1

1
Fn+1

(
1

Fn+1

)Fn+1

,

where Fn and Ln are the nth Fibonacci and Lucas number, respec-
tively.

EM–116. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let 1 =
d1 < d2 < · · · < dk = n be all divisors of a positive integer n. Find
all n, such that k ≥ 6 and

45(d4
2 + d6

2) = 2n2.

EM–117. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1,
and for all n ≥ 3, Fn+1 = Fn + Fn−1 . Prove that for each positive
integer n there is a Fibonacci number ending in at least n zeros.

EM–118. Proposed by Goran Conar, Varaždin, Croatia. The in-
radius of triangle ABC is r = 1. Prove that

∑

cyclic

1

ra + rb

Ç
1 +

rb

rc

åÇ
1 +

ra

rc

å
≥ 2,
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where ra, rb, rc are their exradii. When does equality occur?
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Medium–Hard Problems

MH–113. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Let M be a subset of {1, 2, 3, . . . , 2023} such that for any three
elements (not necessarily distinct) a, b, c of M we have |a+b−c| >
12. Determine the largest possible number of elements of M .

MH–114. Proposed by Michel Bataille, Rouen, France. Let r, s
be positive integers with r ≤ s. Prove that

s∑

k=r

(
r + s

k

)2

≤ 4
s∑

k=r

(
r + s− 1

k

)2

.

MH–115. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Find a function f : R−{0,±1} → R that is continuous everywhere
and satisfies the equation

1

x+ 1
f

Ç
x

x+ 1

å
+

2

x+ 1
f(x+ 1) = 1.

MH–116. Proposed by Andrés Sáez Schwedt, Universidad de
León, León, Spain. Let ABCD be a cyclic quadrilateral such that
the segments AC and BD intersect at point E , and the lines AB
and CD intersect at point F . The circumcircle of triangle BCE
meets the line EF again at point G 6= E . Prove that

GB

GC
=
FB

FC
.

MH–117. Proposed by José Luis Díaz–Barrero, Barcelona, Spain.
Suppose that 2023 distinct points are chosen in the plane and
the distances between them are measured. Show that the total
number of distances among the given points is at least 32.

MH–118. Proposed by Todor Zaharinov, Sofia, Bulgaria. Let
BC = a,CA = b,AB = c are the side lengths of integer sided
non-degenerate triangle ABC with orthocenter H . Let M be the
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midpoint of AC . Knowing that B,C,H,M are concyclic, find all
primitive triples (a, b, c) of positive integers, with the additional
property that a, b, c have no positive common divisor other than
unity.
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Advanced Problems

A–113. Proposed by Marian Ursărescu and Florică Anastase, Ro-
mania. Let A ∈ M2(C) such that detA = 1. For all B ∈ M2(C)
prove that A2B −BA2 = BA−2 −A−2B.

A–114. Proposed by Gonzalo Gómez Abejón, Madrid, Spain. We
have an urn with N balls of different colors. Until they are all of
the same color, we repeat the following step:

• Select two balls at random, of different colors (if they are the
same color we put them back and draw another two until they
are of different colors).

• Then paint the first ball of the color of the second one, then
put them back.

Prove that given an initial set of balls, the average number of steps
needed is always an integer, and in particular if we start with N

balls of N different colors, it will take an average of N(N−1)

2
steps.

A–115. Proposed by Henry Ricardo, Westchester Area Math Cir-
cle, New York, USA. Let p be a prime number. Prove that

p∑

j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

A–116. Proposed by Marian Ursărescu and Florică Anastase, Ro-
mania. Let (an)n≥1 be the sequence defined by a1 = e, an =
en · ann−1 and (bn)n≥1 such thatÇ

1 +
1

n

ån+bn

=
n∏

k=1

Ç
1 +

1

log ak

å
.

Compute lim
n→∞

bn.

A–117. Proposed by Vasile Mircea Popa, Affiliate Professor, "Lu-
cian Blaga" University of Sibiu, Romania. Show that

∫ ∞

0

x lnx

x3 + x
√
x+ 1

dx =
32

81
π2 sin

π

18
.
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A–118. Proposed by Michel Bataille, Rouen, France. For n ∈ N,
let S(n) =

n∑
k=1

(−1)k+1

k
. Prove that the series

∞∑

n=2

(−1)n
S(bn/2c)
n+ 1

is convergent and evaluate its sum.
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Mathlessons
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical notes and lessons
with material useful to solve mathematical problems.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu



42 Arhimede Mathematical Journal

Muirhead via repeated
refinements

Marc Felipe Alsina

1 Introduction

Muirhead’s inequality ([2], [1]) is a very famous (and sometimes
infamous) inequality between symmetric polynomial expressions.
Here, we will state and prove this inequality and introduce some
notation that will help us along the way. Finally, to illustrate the
theoretical results some of its applications are also given.

Definition 1. Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn be
non-negative real numbers. We say that (a1, a2, . . . , an) majorizes
(b1, b2, . . . , bn), and write (a1, a2, . . . , an) � (b1, b2, . . . , bn), if the
following holds:

a1 ≥ b1

a1 + a2 ≥ b1 + b2

...

a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1

a1 + a2 + · · ·+ an−1 + an = b1 + b2 + · · ·+ bn−1 + bn

Note that the last one is an equality.

Definition 2. Let x1, x2, . . . , xn be some fixed positive real num-
bers and a1 ≥ a2 ≥ · · · ≥ an be non-negative real numbers. Then,
we denote by [a1, a2, . . . , an] the expression:

[a1, a2, . . . , an] :=
1

n!

∑

sym

n∏

k=1

xakk =
1

n!

∑

π∈Sn

n∏

k=1

xakπ(k)
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Sn represents the group of permutations π of n elements, so
this is the arithmetic mean of all the possible ways to raise the
fixed numbers to the given exponents in some order. For exam-
ple, if x1 = x, x2 = y and x3 = z , we have that [1, 1, 1] = xyz ,
that [2, 1, 0] = 1

6
(x2y + y2x + x2z + z2x + y2z + z2y) and that

[1, 1, 0] = 1
3
(xy + yz + zx).

With these definitions, we can now state Muirhead’s theorem as
follows:

Theorem 1 (Muirhead’s inequality). Let x1, x2, . . . , xn be some
fixed positive real numbers. Suppose that we have two sequences
(a1, a2, . . . , an) � (b1, b2, . . . , bn). Then,

[a1, a2, . . . , an] ≥ [b1, b2, . . . , bn]

with equality if and only if either x1 = x2 = · · · = xn or ak = bk for
k = 1, 2, . . . , n.

We will first prove a particular case of Muirhead’s inequality, that
will help us prove the general case.

Lemma 1 (Muirhead’s inequality for almost-equal exponents).
Let x1, x2, . . . , xn be some fixed non-negative real numbers. Sup-
pose that (a1, a2, . . . , an) � (b1, b2, . . . , bn). Additionally, suppose
that there exist two indices i and j , with i < j , such that ak = bk
if k 6= i, j . Then,

[a1, a2, . . . , an] ≥ [b1, b2, . . . , bn]

with equality if and only if either x1 = x2 = · · · = xn or we have
ai = bi and aj = bj .

Proof. First of all, notice that from the majorization condition,
more precisely from a1 +a2 + · · ·+ai ≥ b1 +b2 + · · ·+bi , we obtain
ai ≥ bi . We write ai = bi + λ for some non-negative λ, and from
the equality condition, we then obtain aj − λ = bj . Since i < j
implies bi ≥ bj , we have ai = bi + λ ≥ bi ≥ bj ≥ bj − λ = aj .
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We want to prove [a1, a2, . . . , an] ≥ [b1, b2, . . . , bn], or

1

n!

∑

π∈Sn

n∏

k=1

xakπ(k) ≥
1

n!

∑

π∈Sn

n∏

k=1

xbkπ(k)

Once we cancel the normalization constants on both sides, the idea
of the proof is to group the terms of each member of the inequality
in pairs, so that the sum of the left-hand pair is greater than the
sum of the corresponding right-hand pair. To do that, we partition
the set of all permutations into pairs (σ, τ ) where τ is obtained
from σ (and vice versa) by pre-composing by the transposition that
swaps i and j . This is τ (k) = σ(k) if k 6= i, j and τ (i) = σ(j),
τ (j) = σ(i).

Therefore, the sum over all permutations becomes the sum over
all such pairs (σ, τ ), so the inequality becomes:

∑

π∈Sn

n∏

k=1

xakπ(k) =
∑

(σ,τ)

(
n∏

k=1

xakσ(k) +
n∏

k=1

xakτ(k)

)

≥
∑

(σ,τ)

(
n∏

k=1

xbkσ(k) +
n∏

k=1

xbkτ(k)

)
=

∑

π∈Sn

n∏

k=1

xbkπ(k)

We want to show the following, which we later rewrite only in terms
of σ and expand:

n∏

k=1

xakσ(k) +
n∏

k=1

xakτ(k) ≥
n∏

k=1

xbkσ(k) +
n∏

k=1

xbkτ(k)

xa1

σ(1)x
a2

σ(2) · . . . · x
ai
σ(i) · . . . · x

aj
σ(j) · . . . · x

an
σ(n) +

xa1

σ(1)x
a2

σ(2) · . . . · x
ai
σ(j) · . . . · x

aj
σ(i) · . . . · x

an
σ(n) ≥

xb1σ(1)x
b2
σ(2) · . . . · x

bi
σ(i) · . . . · x

bj
σ(j) · . . . · x

bn
σ(n) +

xb1σ(1)x
b2
σ(2) · . . . · x

bi
σ(j) · . . . · x

bj
σ(i) · . . . · x

bn
σ(n)

By dividing everything by
∏

k 6=i,j
xakσ(k) =

∏
k 6=i,j

xbkσ(k) , it is equivalent to

xaiσ(i)x
aj
σ(j) + xaiσ(j)x

aj
σ(i) ≥ x

bi
σ(i)x

bj
σ(j) + xbiσ(j)x

bj
σ(i)
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and, to avoid cumbersome notation, we make the change of vari-
ables y := xσ(i) , z := xσ(j) :

yaizaj + yajzai ≥ ybizbj + ybjzbi

The lowest exponent here is aj , so we divide everything by yajzaj
to obtain:

yai−aj + zai−aj ≥ ybi−ajzbj−aj + ybj−ajzbi−aj

ybi−aj+λ + zbi−aj+λ ≥ ybi−ajzλ + yλzbi−aj

ybi−aj+λ − ybi−ajzλ − yλzbi−aj + zbi−aj+λ ≥ 0

(ybi−aj − zbi−aj)(yλ − zλ) ≥ 0

The last inequality is true because bi − aj ≥ 0 and consequently
the factors have the same sign. Therefore, the inequality has been
proven. Equality is reached when y = z or when λ = 0 (since
bi − aj = 0 also implies λ = 0). The first condition translates
to xσ(i) = xσ(j) , while the last condition means that ai = bi and
aj = bj . If the latter doesn’t happen, then the values xσ(i) and
xσ(j) must be equal for any choice of σ ∈ Sn , which means that
all of x1, x2, . . . , xn must be equal.

The proof ends here, but in order to make the proof more ac-
cessible, we repeat the steps of the proof on a concrete example:
[7, 4, 1] ≥ [5, 4, 3]. If we use x, y and z instead of x1 , x2 , x3 , the
inequality becomes:

1

6

Ä
x7y4z + x7z4y + y7x4z + y7x4z + z7x4y + z7y4x

ä
≥

1

6

Ä
x5y4z3 + x5z4y3 + y5x4z3 + y5x4z3 + z5x4y3 + z5y4x3

ä
We multiply by 6 and group the terms in pairs, marked by different
types of brackets:Ä

x7y4z + z7y4x
ä

+
î
x7z4y + y7x4z

ó
+
¶
y7x4z + z7x4y

©
≥
Ä
x5y4z3 + z5y4x3

ä
+
î
x5z4y3 + y5x4z3

ó
+
¶
y5x4z3 + z5x4y3

©
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Finally, we compare each pair with the corresponding pair on the
other side:

x7y4z + z7y4x ≥ x5y4z3 + z5y4x3 ⇐⇒

⇐⇒ x6 + z6 ≥ x4z2 + z4x2 ⇐⇒
⇐⇒ (x4 − z4)(x2 − z2) ≥ 0

which holds, and similarly for the other pairs.

Now, we can prove the general case. The idea is to make a finite
number of refinements between the left-hand side and the right-
hand side such that each step can be proven using the particular
case that we now know how to prove.

Proof of Muirhead’s inequality. Suppose that (a1, a2, . . . , an) �
(b1, b2, . . . , bn). If (a1, a2, . . . , an) = (b1, b2, . . . , bn), then both
sides of the inequality are the same and we have equality, so
suppose that this doesn’t happen.

If l is the first index with al 6= bl , it must happen that al > bl ,
as a1 + a2 + · · · + al ≥ b1 + b2 + · · · + bl . Since the total sum is
equal, we must have some index m, greater than l, with am < bm .
In between, there must exist two indices i and j (l ≤ i < j ≤ m)
such that ai > bi , aj < bj and ak = bk for i < k < j (this
last condition is empty if j = i + 1). We denote by λ and µ
the positive quantities ai − bi and bj − aj , respectively. From
a1 + a2 + · · ·+ aj ≥ b1 + b2 + · · ·+ bj , we can cancel all the terms
not involving i nor j , and the result can be reordered into λ ≥ µ.

Now, we will construct the sequence c1, c2, . . . , cn as follows: ck =
ak if k 6= i, j and ci = ai−µ, cj = bj = aj +µ. We claim that this
sequence is non-increasing and satisfies

(a1, a2, . . . , an) � (c1, c2, . . . , cn) � (b1, b2, . . . , bn)

The fact that the sequence is non-increasing is easier to see with
a picture than with equations, so we present the relevant num-
bers on the real number line and leave to the reader the task of
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writing down the appropriate inequalities. The same is true for
(a1, a2, . . . , an) � (c1, c2, . . . , cn).

ai−1

ci−1

ai

ci

bi

ai+1 = bi+1

ci+1

. . .

aj−1 = bj−1

cj−1

bj

cj

ajaj+1

cj+1

As for the other majorization, since we know (a1, a2, . . . , an) �
(b1, b2, . . . , bn), the only place we need to check is where the partial
sums a1 +a2 + · · ·+ak and c1 +c2 + · · ·+ck differ, which happens
only when i ≤ k < j and, indeed, the inequality holds:

(c1 + c2 + · · ·+ ci−1) + ci + (ci+1 + · · ·+ ck) =

(a1 + a2 + · · ·+ ai−1) + ci + (bi+1 + · · ·+ bk) ≥

(b1 + b2 + · · ·+ bi−1) + bi + (bi+1 + · · ·+ bk)

Now that we have (a1, a2, . . . , an) � (c1, c2, . . . , cn) � (b1, b2, . . . , bn),
we want to prove

[a1, a2, . . . , an] ≥ [c1, c2, . . . , cn] ≥ [b1, b2, . . . , bn]

For the first equality, we can make use of the particular case be-
cause the sequences only differ on two terms. In order to prove the
second one, we repeat the process and find a new refinement, and
we keep doing this until we reach the right-hand side. Since in
the set of indices k with ck = bk increases by at least one in each
refinement, after some time we will be able to use the lemma also
on the right equality.

As an example, we present the series of refinements we do to prove
that [7, 5, 3, 3, 0, 0] ≥ [5, 5, 4, 2, 1, 1]:

[7, 5, 3, 3, 0, 0] ≥ [6, 5, 4, 3, 0, 0] ≥ [6, 5, 4, 2, 1, 0] ≥ [5, 5, 4, 2, 1, 1]

In order to complete the proof, we need to discuss the equality
cases. By construction, each refinement is strict unless all the
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variables are equal (the other equality condition does not hold). So,
the only way that we can mantain equality is either by doing no
refinements (so ak = bk for all k) or by having x1 = x2 = · · · =
xn .

We end by presenting some problems that can be solved, directly
or indirectly, using Muirhead’s inequality:

Problem 1 (Arithmetic Mean - Geometric Mean). Given positive
real numbers x1, x2, . . . , xn , prove

x1 + x2 + · · ·+ xn

n
≥ n
√
x1x2 . . . xn

Solution. This is a direct application of Muirhead’s theorem. The
left-hand side is [1, 0, 0, . . . , 0] and the right-hand side is

î
1
n
, 1
n
, 1
n
, . . . , 1

n

ó
.

Since (1, 0, 0, . . . , 0) �
Ä

1
n
, 1
n
, 1
n
, . . . , 1

n

ä
, the inequality follows.

Problem 2 (Nesbitt inequality). Given positive real numbers a, b, c,
prove

a

b+ c
+

b

c+ a
+

c

a+ b
≥

3

2

Solution. In order to apply Muirhead’s inequality, we clear denom-
inators.

2a(a+b)(c+a)+2b(b+c)(a+b)+2c(c+a)(b+c) ≥ 3(a+b)(b+c)(c+a)

After expanding and cancelling terms, we end up with

2(a3 + b3 + c3) ≥ a2b+ a2c+ b2a+ b2c+ c2a+ c2b

This is 6[3, 0, 0] ≥ 6[2, 1, 0], which holds by Muirhead.

Problem 3. Let x, y and z be positive real numbers such that
xyz = 1 and let n ≥ 0 be an integer. Prove that

xn+1 + yn+1 + zn+1 ≥ xn + yn + zn

Solution. We multiply the right-hand side by 3
√
xyz , which is equal

to 1, in order to make both sides have the same degree. Then, the
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left-hand side equals 3[n+ 1, 0, 0] while the right-hand side equals
3
î
n+ 1

3
, 1

3
, 1

3

ó
. The first sequence majorizes the second one, so the

inequality holds.

Problem 4. Let P (x) = x3 −Ax2 +Bx−C be a polynomial with
three positive real roots. Prove that B2 ≥ 3AC .

Solution. By Cardano-Viète, if α, β, γ are the roots of P , then
A = α+ β + γ , B = αβ + βγ + γα and C = αβγ . The inequality
becomes (αβ + βγ + γα)2 ≥ 3(α + β + γ)αβγ . After expanding
and simplifying:

α2β2 + β2γ2 + γ2α2 ≥ α2βγ + αβ2γ + αβγ2

or 3[2, 2, 0] ≥ 3[2, 1, 1], which hold by Muirhead.

Problem 5 (IMC 2012, Problem 4). Let n ≥ 3 and let x1, x2, . . . , xn

be nonnegative real numbers. Define A =
n∑
i=1

xi , B =
n∑
i=1

x2
i ,

C =
n∑
i=1

x3
i . Prove that

(n+ 1)A2B + (n− 2)B2 ≥ A4 + (2n− 2)AC

Solution. First, let x1, x2, . . . , xn be positive. We compute A2B ,
B2 , A4 and AC :

A2B =

(
n∑

i=1

xi

)2 n∑

i=1

x2
i =

n∑

i=1

x4
i +

∑

i 6=j
x2
ix

2
j + 2

∑

i 6=j
x3
ixj + 2

∑

i 6=j
i 6=k
j<k

x2
ixjxk

B2 =

(
n∑

i=1

x2
i

)2

=
n∑

i=1

x4
i + 2

∑

i<j

x2
ix

2
j

A4 =

(
n∑

i=1

xi

)4

=
n∑

i=1

x4
i + 4

∑

i 6=j
x3
ixj + 6

∑

i<j

x2
ix

2
j +

+ 12
∑

i6=j
i 6=k
j<k

x2
ixjxk + 24

∑

i<j<k<l

xixjxkxl

AC =
n∑

i=1

xi
n∑

i=1

x3
i =

n∑

i=1

x4
i + 2

∑

i 6=j
x3
ixj
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In Muirhead’s notation,

A2B = n[4, 0, . . . , 0] + n(n− 1)[2, 2, 0 . . . , 0] +

+ 2n(n− 1)[3, 1, 0, . . . , 0] + 2
n(n− 1)(n− 2)

2
[2, 1, 1, 0, . . . , 0]

B2 = n[4, 0, . . . , 0] + 2
n(n− 1)

2
[2, 2, 0 . . . , 0]

A4 = n[4, 0, . . . , 0] + 4n(n− 1)[3, 1, 0, . . . , 0] +

+ 6
n(n− 1)

2
[2, 2, 0, . . . , 0] + 12n

(n− 1)(n− 2)

2
[2, 1, 1, 0, . . . , 0] +

+ 24
n(n− 1)(n− 2)(n− 3)

24
[1, 1, 1, 1, 0, . . . , 0]

AC = n[4, 0, . . . , 0] + 2n(n− 1)[3, 1, 0, . . . , 0]

After substituting that in, we need to prove:

2n(n−1)(n−2)[2, 2, 0 . . . , 0]+n(n−1)(n−2)(n−5)[2, 1, 1, 0 . . . , 0] ≥

≥ n(n− 1)(n− 2)(n− 3)[1, 1, 1, 1, 0 . . . , 0]

which holds by Muirhead.

Thus, the inequality holds when x1, x2, . . . , xn are positive. We
use continuity to extend the domain to the nonnegative reals.
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Bounds of zeros from the
beginning to Cauchy

José Luis Díaz-Barrero

1 Introduction

The purpose of this note is to give some bounds for the zeros zk
of the polynomial with complex coefficients A(z) = a0 + a1z +
. . . + an−1z

n−1 + anz
n , as functions of all or part of its coef-

ficients. That is, we want to express zk = zk(a0, a1, . . . , an).
This process consists in determine regions of the complex plane
Γ = Γ(a0, a1, . . . , an) that enclose in their interior all the zeros of
A(z). For example, we try to find circles or annulus of smallest
radius having in their interior all the zeros of A(z).

Historically speaking, our subject dates from about the time when
the geometric representation of complex numbers was introduced
into mathematics. This problem first received attention in the
seventeenth century. The French mathematician and successor of
Descartes, Florimond de Beaune (1601-1652), in his De Limitibus
Aequationum, tried to show that the bounds of positive zeros might
be found from the coefficients in polynomials up to the fourth de-
gree. Unfortunately, he only considered specific cases and did not
dared to solve the problem for the nth-degree. In 1683, John Wallis,
in commenting on de Beaune’s rules for finding bounds of the ze-
ros, stated that this “subject is yet capable of further development”.

The first general methods for obtaining limits for the moduli of
the zeros date from Newton (1622) and MacLaurin (1748). Since
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then, researches of many mathematicians have resulted in nu-
merous methods for obtaining more useful bounds. In part this
development resulted from the efforts to extend from the real do-
main to complex domain the classical results of Rolle, Descartes
and Sturm. Also contributed to, the development of the theory of
functions of complex variables with results such as the Principle
of Argument and its corollary Rouché’s theorem which are funda-
mental as basic tools in the study of polynomial from an analytic
view point. Among the researchers that have faced the problem
of finding bounds for the zeros, deserves a special mention the
contribution to the subject made by Lagrange, Gauss and Cauchy.
Incidental to his proof of the Fundamental Theorem of Algebra
Gauss showed that polynomial

A(z) = zn +
n−1∑

k=0

akz
k

has no zeros outside of the circle |z| = r . In the case that all the co-
efficients ak are reals, he showed in 1799 that r = max{1, 21/2S}
where S is the sum of the positive ak , and he also showed in 1816
that

r = max
0≤k≤n−1

{21/2n|ak|)1/n−k}.

2 Bounds for the zeros

Bounds for the zeros of a polynomial can be classified into two
categories: explicit bounds and implicit bounds. Explicit bounds,
usually are functions of all or part of the coefficients of the poly-
nomial, meanwhile implicit bounds usually involve the solution
of an algebraic equation derived from the polynomial. In general,
implicit bounds are sharper than explicit bounds.

We begin with classical results. An upper bound for all the po-
sitive zeros of real polynomials involving the derivative was first
established by Newton [6].
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Theorem (Newton). Let A(z) be a polynomial with real coeffi-
cients defined by

A(z) = zn +
n−1∑

k=0

akz
k.

If for z0 > 0, A(z0), A′(z0), A′′(z0), . . . , A(n)(z0) are non–negative,
then any positive zero of A(z) is greater than z0 .

Proof. Taylor’s formula allows us to write

A(z) =
n∑

k=0

A(k)(z0)

k!
(z − z0)k.

Since, for z > z0 we have A(z) > 0, then the polynomial can not
have zeros greater than z0 .

Among the simpler test for bounds of the positive zeros of real
polynomials we have the formula of MacLaurin [3].

Theorem (MacLaurin). Let A(z) be a polynomial with real coeffi-
cients defined by

A(z) = zn +
n−1∑

k=0

akz
k.

If G is the absolute value of its greatest negative coefficient, then
all its positive zeros are bounded by 1 +G.

Lagrange also contributed to the subject establishing the following
bound for the positive zeros of a real polynomial.

Theorem (Lagrange). Given the monic polynomial

A(z) = zn +
n−1∑

k=0

akz
k

in which all the coefficients are real and some are negative. Let
ar be the first negative coefficient, that is, ar < 0 and ar+1 ≥ 0,
ar+2 ≥ 0, . . . , an−1 ≥ 0, and let G be the greatest absolute value of
all negative coefficients. Then an upper bound for the positive zeros
of A(z) is M = 1 +

n−r√
G.
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Proof. We have to prove that A(z) > 0 for any real number z ≥M .
From the definition of G and r it follows

A(z) = zn +
n−1∑

k=0

akz
k

≥ zn +
r∑

k=0

akz
k

≥ zn −G(zr + zr−1 + . . .+ z + 1)

= zn −G
zr+1 − 1

z − 1
.

Let z be such that z ≥ 1 +
n−r√

G. Since A(z) has some negative
coefficient we conclude that 0 < G ≤ (z − 1)n−r and z < 1. Then

G(zr+1 − 1) < Gzr+1 ≤ zr+1(z − 1)n−r

= zr+1(z − 1)(z − 1)n−r−1

< zr+1(z − 1)zn−r−1

= zn(z − 1).

So, we have that if z ≥ 1 +
n−r√

G, then G(zr+1 − 1) < zn(z − 1).
This completes the proof.

Another result concerning on upper limits for the zeros of real
polynomials and easy to remember and applying is the following
due to Jean J. Bret. In many cases, however, this is a very high
limit.

Theorem (Bret). If, in a polynomial with real coefficients in which
the coefficient of the highest power of the variable is positive, the
absolute value of each negative coefficient be divided by the sum
of all the positive coefficients which precede it, the greatest quotient
so obtained increased by unity is an upper bound for the positive
zeros.

Proof. In order to fix our ideas, we regard, for example, the fourth
coefficient as negative, and we consider also a negative coefficient
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in general, say −ar . So, we can write A(z) in the form

A(z) = anz
n + an−1z

n−1 + an−2z
n−2 − an−3z

n−3

+ . . .− arzr + . . .+ a1z + a0.

The identity

zk − 1

z − 1
= zk−1 + zk−2 + . . .+ z + 1

allows us to write

akz
k = ak(z − 1)(zk−1 + zk−2 + . . .+ z + 1) + ak.

In the expression of A(z) we expand each term with positive
coefficient to obtain

A(z) = an(z − 1)zn−1 + . . .+ an(z − 1)zn−r + . . .+ an

+an−1(z − 1)zn−2 + . . .+ an−1(z − 1)zn−r + . . .+ an−1

+an−2(z − 1)zn−3 + . . .+ an−2(z − 1)zn−r + . . .+ an−2

−an−3z
n−3 + . . .− an−rzn−r + . . .+ a0.

Grouping terms of the same power of the variable we get the su-
ccessive coefficients of zn−1, zn−2, · · · , being

an(z−1), (an+an−1)(z−1), (an+an−1 +an−2)(z−1)−an−3, · · · ,

(an + an−1 + · · ·+ an−r+1)(z − 1)− an−r, · · ·

Observe that any value of z > 1 is sufficient to make positive every
term in which no negative coefficients occurs. To make the latter
terms positive, we must have

(an + an−1 + an−2)(z − 1) > an−3

· · · · · · · · · · · · · · ·
(an + an−1 + · · ·+ ar−1)(z − 1) > an−r

· · · · · · · · · · · · · · ·
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Hence
z >

an−3

an + an−1 + an−2

+ 1,

· · · · · · · · · · · · · · ·
z >

an−r

an + an−1 + · · ·+ an−r
+ 1,

· · · · · · · · · · · · · · ·

To ensure every term being made positive, we must take the value
of the greatest of the quantities found in this way. Such a value z ,
therefore, is a bound for the positive zeros of An(z).

In 1849 Gauss established the following implicit bound for the
zeros

Theorem (Gauss). Let A(z) = zn+
n−1∑

k=0

akz
k be a monic polynomial

with complex coefficients. If r is the unique positive root of equation

Gn(z) = zn − 21/2
Å
|an−1|zn−1 + . . .+ |a1|z + |a0|

ã
= 0,

then all the zeros of A(z) lie in the disk C = {z ∈ C : |z| ≤ r}.

Proof. Let M = max
0≤k≤n−1

ß
|ak|

™
, then

√
2
n−1∑

k=0

|ak|rk ≤ M
√

2
n−1∑

k=0

rk .

Hence,

rn −
√

2
n−1∑

k=0

|ak|rk ≥ rn −M
√

2
n−1∑

k=0

rk

= rn
ï
1−M

√
2
Å1

r
+

1

r2
+ . . .+

1

rn

ãò
.

For r > 1 is
n∑

k=1

1

rk
<
∞∑

k=1

1

rk
=

1

r − 1
, and the preceding is greater

than

rn
ï
1−

M
√

2

r − 1

ò
= rn

ïr − 1−M
√

2

r − 1

ò
> 0

when r > 1 +M
√

2. Therefore, taking r = 1 +M
√

2 the theorem
is proved.
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Note that when A(z) = Gn(z) at least one zero lie on |z| = r .

In 1829 Cauchy [1] contributed to with two important results
sharpening the bounds previously stated by Gauss. The first, is
the following explicit bound

Theorem (Cauchy). Let An(z) =
n∑

k=0

akz
k be a polynomial of de-

gree n with complex coefficients. Then all the zeros of An(z) lie in
the disk

C =

{
z ∈ C : |z| < 1 +

K

|an|

}
,

where K = max
1≤k≤n

{|an−k|}.

Proof. Assume that |z| > 1. Then, from

|An(z)| ≥ |an| |z|n − (|an−1| |z|n−1 + . . .+ |a1||z|+ |a0|),

it follows

|An(z)| ≥ |an| |z|n −K(|z|n−1 + . . .+ |z|+ 1)

= |an| |z|n
Å
1−

K

|an|

n∑

k=1

|z|−k
ã

> |an| |z|n
Å
1−

K

|an|

∞∑

k=1

|z|−k
ã

= |an| |z|n
|an| |z| − (|an|+K)

|z| − 1
.

Hence, if |z| ≥ 1+K/|an|, then |An(z)| > 0. Hence, the only zeros

in |z| > 1 are those satisfying |z| < 1 +
K

|an|
. But, all the zeros

in |z| ≤ 1 also satisfy the foregoing inequality and the theorem is
fully proven.

To get a lower bound for the moduli of the zeros first we observe
how affects an inversion in the variable to the zeros. If an inversion
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is performed, we must change z by 1/z . Then, the transformed
polynomial is

An(1/z) =
1

zn
+
an−1

zn−1
+ . . .+

a1

z
+ a0

=
1

zn
(1− zz1)(1− zz2) . . . (1− zzn)

=

ñ
(−1)n

zn

ôÅ
z −

1

z1

ãÅ
z −

1

z2

ã
. . .

Å
z −

1

zn

ã n∏

k=1

zk.

Taking conjugates and multiplying by zn , we have

znAn(1/z) = a0z
n + a1z

n−1 + . . .+ an−1z + 1

= a0

n∏

k=1

Å
z −

1

zk

ã
.

Thus, after carrying out an inversion, the zeros of the transformed
polynomial are the inverses and conjugates of the zeros of the
original polynomial. For a polynomial whose coefficients are the
conjugates in reverse order of An(z) coefficients, we say that it is
its reciprocal or inverse. We denote it by

A∗n(z) = znAn(1/z) =
n∑

k=0

an−kz
k.

From Cardan-Viète formulas [2] we have

a1

a0

=
(−1)n−1[z1 . . . zn−1 + . . .+ z2 . . . zn]

(−1)nz1z2 . . . zn

= (−1)1

ñ
1

z1

+
1

z2

+ . . .+
1

zn

ô
= (−1)1

∑

i

1

zi
.

The next coefficient is

a2

a0

= (−1)2

[
1

z1z2

+
1

z1z3

+ . . .+
1

zn−1zn

]

= (−1)2
∑

i<j

1

zizj
,
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and continuing in the same way we get finally
1

a0

= (−1)n
1

z1z2 . . . zn

= (−1)n
ñ

1

z1

1

z2

. . .
1

z1

ô
.

The preceding expressions are the Cardan-Viète formulas for A∗n(z)
and they show again that its zeros are the inverses and conjugates
of those of An(z). From a geometric view point it does mean that
the zeros of a polynomial and its reverse are symmetric in the
unit circle. If An(z) = uA∗n(z) with |u| = 1, then An(z) is called
self-inversive or self-reciprocal.

By applying the last theorem to A∗n(z), we get
∣∣∣∣
1

zk

∣∣∣∣ =
∣∣∣∣

1

zk

∣∣∣∣ < 1 + max
1≤k≤n

®∣∣∣∣ak
a0

∣∣∣∣
´

= max

®
1 +

∣∣∣∣
an

a0

∣∣∣∣, 1 +
∣∣∣∣
an−1

a0

∣∣∣∣, · · · , 1 +
∣∣∣∣
a1

a0

∣∣∣∣
´

= max

{
|a0|+ |an|
|a0|

,
|a0|+ |an−1|
|a0|

, · · · ,
|a0|+ |a1|
|a0|

}
.

Therefore,

|zk| = |zk| ≥
1

max

{
|a0|+ |an|
|a0|

,
|a0|+ |an−1|
|a0|

, · · · ,
|a0|+ |a1|
|a0|

}

≥ min

{
|a0|

|a0|+ |an|
,

|a0|
|a0|+ |an−1|

, · · · ,
|a0|

|a0|+ |a1|

}

= min
1≤k≤n

{
|a0|

|a0|+ |ak|

}
= min

1≤k≤n

{
|a0|

|a0|+ |ak|

}
.

Now, calling r1 = min
1≤k≤n

{
|a0|

|a0|+ |ak|

}
and r2 = 1+ max

0≤k≤n−1

®∣∣∣∣ak
an

∣∣∣∣
´

=

max
0≤k≤n−1

{
|ak|+ |an|
|an|

}
, we have obtained a more complete version

of Cauchy’s explicit bound. It can be stated as follows
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Theorem. Let An(z) =
n∑

k=0

akz
k be a complex polynomial. Then,

all its zeros lie on the annulus A = {z ∈ C : r1 ≤ |z| < r2}, where

r1 = min
1≤k≤n

{
|a0|

|a0|+ |ak|

}
,

and

r2 = 1 + max
0≤k≤n−1

®∣∣∣∣ak
an

∣∣∣∣
´

= max
0≤k≤n−1

{
|ak|+ |an|
|an|

}
.

A second result, due also to Cauchy is the following implicit bound.

Theorem (Cauchy). All the zeros of An(z) lie in the disk C = {z ∈
C : |z| ≤ r}, where r is the unique positive root of the equation

|an|zn = |a0|+ |a1|z + . . .+ |an−1|zn−1.

Proof. We consider the function

C(z) ≡ |an|zn − (|a0|+ |a1|z + . . .+ |an−1|zn−1) = 0

If |z| > r, from the preceding it follows that C(|z|) > 0. Since

|An(z)| ≥ |an| |z|n − (|an−1| |z|n−1 + . . .+ |a0|) = C(|z|),

we conclude that |An(z)| > 0. That is, An(z) 6= 0, for |z| > r .
Hence, all zeros of An(z) must lie in the disk |z| ≤ r . Observe
that the limit is attained when A(z) = |an|zn− (|a0|+ |a1|z+ . . .+
|an−1|zn−1).

A basic tools in the study of polynomial from an analytic view point
are results of the theory of functions of complex variables such as
the Principle of Argument and its corollary Rouché’s theorem [5].

Theorem (Rouché). If two functions f(z) and g(z) are analytic
on and inside the close path γ, f(z) 6= 0 on γ, and |f(z)| > |g(z)|
on γ, then f(z) and f(z) + g(z) have the same number of zeros
inside γ .
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Applying Rouché’s theorem, Pellet [4] generalized the preceding
result of Cauchy as we state in the following

Theorem (Pellet). If polynomial

Aj
n(z) = |a0|+ . . .+ |aj−1|zj − |aj|zj + |aj+1|zj+1 + . . .+ |an|zn

has two positive zeros r1 and r2 , (r1 < r2), then polynomial An(z)
has exactly j zeros inside the disk C = {z ∈ C : |z| ≤ r1}, and no
zeros in the ring R = {z ∈ C : r1 < |z| < r2}.

Finally, we have obtained a sufficient condition for a self–inversive
polynomial to have all its zeros on the unit circle. It is stated in
the following

Theorem. Let An(z) be a self–inversive monic complex polyno-
mial. If its implicit bound of Cauchy is one, then all its zeros lie
on the unit circle.

Proof. Let An(z) = zn +
n−1∑

k=0

akz
k, |a0| = 1. As we have seen

before, its implicit bound of Cauchy is the unique positive root of
the equation

|an|zn = |an−1|zn−1 + . . .+ |a1|z + 1.

If z = 1 is the unique positive solution of the previous equation,
then

1 = |an−1|+ |an−2|+ . . .+ |a1|+ 1,

and therefore,
n−1∑

k=1

|an−k| = 0.

Since, |an−k| ≥ 0, k = 1, 2, · · · , n− 1, then from the preceding it
follows |an−k| = 0 and an−k = 0 for k = 1, 2, . . . , n− 1. Therefore,
An(z) = zn + a0 = zn + 1, and the theorem is proved.

Remark. The reciprocal, in general does not hold as we show in
the following example. Polynomial A4(z) = z4 + z3 + z2 + z + 1
has all its zeros on |z| = 1, but its implicit bound of Cauchy is
r ' 1.93.
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Problems and solutions from
the 10th edition of

BarcelonaTech Mathcontest

O. Rivero Salgado and J. L. Díaz-Barrero

1 Problems and solutions

Hereafter, we present the four problems that appeared in the paper
given to the contestants of the BarcelonaTech Mathcontest 2023,
as well as their official solutions.

Problem 1. Let a and b be two positive perfect squares such
that a+ b is also a perfect square. Show that 16a− 9b cannot be
a positive prime number.

Solution. Firstly, writing a = x2 , b = y2 , we have that

16a− 9b = 16x2 − 9y2 = (4x+ 3y)(4x− 3y),

so the unique option for this quantity being prime occurs when
4x + 3y is prime and 4x − 3y = 1. However, writing a + b = z2 ,
we have that

16a−9b = 16x2 +16y2−25y2 = 16z2−25y2 = (4z+5y)(4z−5y)

is also prime, so again it must occur 4z − 5y = 1. If 4x − 3y =
4z − 5y , we obtain that z = 2x+y

2
. Since z2 = x2 + y2 , it occurs

that

z2 = x2 + xy +
y2

4
= x2 + y2.

Therefore, x = 3y
4

, z = x + y
2

= 5y
4

. However, this means that
4x− 3y = 0, which contradicts the fact that 4x− 3y = 1.
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Problem 2. Three ants lie at different vertices of a rectangle,
and they can move in the plane of the rectangle according to
the following rule: in each turn only one of them moves in the
direction parallel to the straight line determined by the other two
ants. Show that the three ants cannot lie simultaneously at the
three midpoints of the sides of the rectangle.

Solution. Let A,B,C be the three ants that are moving on the
rectangle ABCD of the figure. At the beginning the three ants are
on the vertex corresponding to its name.

B'

A'
Q

P

N

M

D C

BA

Figure 1: Scheme for solving problem 2.

Let AB = a and BC = b. Then the area of triangle ABC is ab/2.
Note that if one of the three moves parallel to the segment formed
by the other two, the area of the triangle formed by them will
remain constant, since the base of the triangle (segment formed
by the two that do not move) is maintained and the length of
the altitude of the triangle does not change, because it is moving
parallel. Then the area of the triangle formed by A,B,C in each
move will always be ab/2 (invariant).

Now, if they were located at the midpoints (M,N,Q in the figure),
the area of the triangle formed by them would be ab/4 . Therefore
the three ants cannot be located at three of the midpoints of the
sides of the rectangle simultaneously.

Note that the same result is obtained when the ants start the game
at vertices: ABD,ACD,BCA, respectively.
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Problem 3. Let n be the number of 9-tuples of positive integers
of the form (a1, a2, . . . , a9) satisfying

1

a1

+
1

a2

+ . . .+
1

a9

= 1.

Determine the remainder of n upon division by 6.

Solution. We start by finding the parity of n. Given a 9-tuple,
assume that we have the numbers b1, . . . , br (r ≤ 9) a total number
of m1, . . . ,mr times, with m1 ≥ . . . ≥ m9 . Then, the different
permutations of that solution give a total of 9!

m1!···mr!
solutions. We

claim that the unique way in which such quotient is even occurs
when r = 1 (and therefore m1 = 9) or when r = 2, m1 = 8 and
m2 = 1. Indeed, 27 | 9!, so it must also divide the product of the
mi .

• If r = 1, we have m1 = 9 and the quotient is 1.
• If r = 2, we see that 128 does not divide any of the numbers

5! · 4!, 6! · 3! and 7! · 2!. However, if m1 = 8 and m2 = 1, the
quotient is 9.

• If r = 3, m1 ≤ 7. If 6 ≤ m1 ≤ 7, the maximum power of
two dividing the product of the mi is at most 25+1 = 64. If
4 ≤ m1 ≤ 5, then the maximum power of two is either 25 or
26 . Finally, if m1 = 3, then m2 = m3 = 3 and the quotient is
even.

• If r ≥ 4, the unique way in which m1 = 6 is (6, 1, 1, 1),
which gives an even quotient. The cases where m1 ≥ 4 are
the following ones: (5, 1, 1, 1, 1), (5, 2, 1, 1), (4, 1, 1, 1, 1, 1),
(4, 2, 1, 1, 1) and (4, 2, 2, 1). All of them give an even quotient.
Let a, b, c be the number of times that we have the numbers
1, 2, 3, respectively. Then, b + c ≥ 7, but a + 2b + 3c = 9.
From here, we conclude that

9 = a+ c+ 2(b+ c) ≥ a+ c+ 14 ≥ 14,

which is a contradiction.

We must count the number of 9-tuples where all of them are equal
or where a1 is different from the other eight, and at the same
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time these are equal among them. The first case corresponds to
a1 = . . . = a9 = 9. For the second case, consider

1

a
+

8

b
= 1, a 6= b.

Observe that either a ≤ 2 or b ≤ 16. In the first case, a = 2, b =
16. For the second one, we must also consider a = 3, b = 12; and
a = 5, b = 10.

This gives 4 solutions with an odd number of permutations, so n
must be even.

Arguing in the same way and keeping the same notations, we can
determine the remainder upon division by 3. Since 81 | 9!, 81 also
divides the product of the factorials. We distinguish three cases:

• If r = 1, the quotient is 1, which is not a multiple of 3.
• If 6 ≤ m1 ≤ 8, the greatest power of 3 dividing the product of

the factorials is at most 32+1 , so the quotient is a multiple of
3.

• If m1 < 6, then each factorial gives at most a factor of 3, and it
is not possible to have more than 3 of the mi greater or equal
than 3. Hence, the greatest power of 3 dividing the product of
factorials is again 33 , so the quotient is a multiple of 3.

Hence, n must be 1 modulo 3, since the only solution not giving a
multiple of 3 of options corresponds to a1 = a2 = . . . = a9 = 9.

Combining the two results, we have that n gives a remainder of 4
upon division by 6.

Problem 4. Let R+ denote the set of real positive numbers. Find
all functions f : R+ → R+ , such that f(x + y) + f(x) · f(y) =
f(xy) + f(x) + f(y).

Solution. Putting x = y = 2, we get f(4) + f2(2) = f(4) + 2f(2).
Hence f(2) = 0. Putting x = y = 1, we get f(2) + f2(1) = 3f(1),
that is f2(1)− 3f(1) + 2 = 0. This is a quadratic equation in f(1)
that has two roots 1 and 2. We distinguish the two cases:
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• Case 1: f(1) = 1. We shall prove that in this case the function
f is additive as well as multiplicative. That is, f(u + v) =
f(u)+f(v) and f(uv) = f(u)f(v) for all u, v ∈ R+ . It follows
from the statement that it is enough to prove one of the two
properties. Let us prove the additive property. Substituting
y = 1 in the equation, yields f(x+ 1) + f(x) · f(1) = 2f(x) +
f(1), that is, f(x + 1) = f(x) + 1 for all positive x. Now let
u and v be two arbitrary positive numbers. Putting in the
statement the pairs x = u, y = v/u and x = u, y = v/u + 1,
yields

f(u+ v/u) + f(u) · f(v/u) = f(v) + f(u) + f(v/u),

and
f(u+ v/u+ 1) + f(u) · f(v/u+ 1)

= f(u · (v/u+ 1)) + f(u) + f(v/u+ 1),

or

f(u+v/u)+1+f(u)(f(v/u)+1) = f(u+v)+f(u)+f(v/u)+1

from which f(u+v) = f(u)+f(v) is obtained after subtracting
the two equations. It follows from the additive property that
f(n) = n for all positive integers n, and it follows from the
multiplicative property that f(k/n) = f(k)/f(n) = k/n for all
integers k, n. Thus f(q) = q for all positive rational numbers
q . Additivity also implies that the function is monotonic. That
is, f(x) < f(x) + f(y − x) = f(y) for x < y . So, the only
such function in this case is the identity f(x) = x.

• Case 2: f(1) = 2. We shall show that the function is f(u) = 2
(constant) for all positive u. Indeed, putting y = 1 into the
equation again, we get f(x + 1) + 2f(x) = 2f(x) + 2, thus
f(x + 1) = 2. That proves the statement for u > 1. Now let
u be an arbitrary real number. If v is a number such that
v, uv and u + v are all greater than 1. The equation states
that f(u + v) + f(u) · f(v) = f(uv) + f(u) + f(v), that is,
2 + f(u) · 2 = 2 + f(u) + 2. Hence f(u) = 2.

Finally, we conclude that the statement is satisfied by two functions
f(x) = x and f(x) = 2, as can be easily checked.
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Solutions
No problem is ever permanently closed. We will be very pleased to
consider new solutions or comments on past problems for publica-
tion.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

Elementary Problems

E–107. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Suppose the polynomial with complex coefficients
A(z) = z5 + a4z

4 + a3z
3 + a2z

2 + a1z + a0 has distinct zeros and
that any three of them are noncollinear. Show that we can always
choose four of these zeros as vertices of a convex quadrilateral.

Solution 1 by Michel Bataille, Rouen, France. If M,N,P are
three noncollinear points in the plane, let ÿ�MNP denote the angle
with vertex N limited by the rays [NM) and [NP ).
Let A,B,C,D,E be the points whose affixes are the roots of the
polynomial.
As the first case, we suppose that one of these points is interior
to a triangle whose vertices are three of the other points. Say
D is interior to 4ABC . The point E is in one of the angles◊�BDC,◊�CDA,◊�ADB , say E ∈ ◊�BDC . If E is exterior to 4ABC ,
then DBEC is convex (since the segments [BC] and [DE] are
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concurrent); otherwise, E is interior to ◊�BDC while A is in ◊�BED
or ◊�CED , say the former. Then ADEB is convex.
Now, suppose that D,E are both exterior to 4ABC . If D ∈◊�BAC

(say), then ABDC is convex. If D /∈◊�BAC,D /∈◊�CBA,D /∈◊�ACB ,
say D ∈ ÿ�B′AC′ where B′ and C′ are the reflections of B and C
about A, then A is interior to 4DBC and we are back to the first
case. This completes the proof.

Solution 2 by the proposer. The convex hull of the five zeros of
A(z) may have the form of a pentagon, a quadrilateral or a triangle.
If it is a pentagon or a quadrilateral the statement is obvious. In
the last case, we observe that the triangle has two interior points.
Draw a line by these two points. It divides the triangles in two
parts. On account of Pigeonhole principle, in one of the parts lie
two vertices of the triangle that jointly with the two interior points
form a convex quadrilateral.

Solution 3 by Henry Ricardo, Westchester Area Math Circle,
New York, USA. First, if the convex hull C of the five given points
in the plane is a convex pentagon or a convex quadrilateral, we
are done. (Given a convex pentagon, any four of the points can
be connected to form a convex quadrilateral.) If C is a triangle
A0A1A2 , then two of the five points, say P and Q, lie in the
interior of C . The line ` joining P and Q intersects two sides of
C in interior points. If A1 and A2 are two vertices of C lying on
the same side of `, then A1, A2, P,Q are the vertices of a convex
quadrilateral.

Comment. We note that the polynomial information is irrelevant:
Given any five points in the plane, no three of which are collinear,
we can choose four of them as vertices of a convex quadrilateral.

Also solved by José Gibergans-Báguena, BarcelonaTech, Terrassa,
Spain.

E–108. Proposed by Rovsen Pirkuliyev, Sumgait City, Azerbaijan.
Solve in R the following equation

2022 sin2022 x+cos4 x−3 sin 2x cosx−13 cos2 x+11 sinx+2022 = 0.
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Solution 1 by Michel Bataille, Rouen, France. From cos2 x =
1− sin2 x, cos4 x = (1− sin2 x)2, 3 sin 2x cosx = 6 sinx(1− sin2 x),
we deduce that the given equation writes as P (sinx) = 0 where P
is the polynomial defined by

P (X) = 2022X2022 +X4 + 6X3 + 11X2 + 5X + 2010.

Clearly, we have P (X) > 0 when X > 0. In addition, if −1 ≤ X ≤
0, then −11 ≤ 6X3 + 5X ≤ 0 so that 2010 + 6X3 + 5X > 1999.
Thus, P (X) 6= 0 when −1 ≤ X ≤ 1 and we conclude that the
given equation has no real solution.

Solution 2 by the proposer. We have that the given equation can
be written as

2022 sin2022 x+ (1− cos2 x)2 + (1− cosx)(6 sinx+ 9)

+2(1− cos2 x) + 5 sinx+ 2010 = 0,

or
2022 sin2022 x+ (1− cos2 x)(1− cos2 x+ 6 sinx+ 9)

+2 sin2 x+ 5 sinx+ 2010 = 0,

or

2022 sin2022 x+ sin4 x+ 6 sin3 x+ 11 sin2 x+ 5 sinx+ 2010 = 0.

Putting t = sinx, we obtain

2022t2022 + t4 + 6t3 + 9t2 + 2t2 + 5t+ 2010 = 0

or
2022t2022 + t2(t+ 3)2 + 2t2 + 5t+ 2010 = 0.

Since 2022t2022 ≥ 0, t2(t+3)2 ≥ 0 and 2t2+5t+2010 > 0 (because
its discriminant is negative), then LHS is positive and RHS is zero,
and the equation has no solutions in R.

Also solved by José Luis Díaz-Barrero, Barcelona, Spain.
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E–109. Proposed by Michel Bataille, Rouen, France. Let f(x) =
cos(x/2)

1− sin(x/2)
and let α, β, γ be the angles of a triangle. Prove that

f(α) + f(β) + f(γ) = f(α) · f(β) · f(γ).

Solution 1 by Miguel Amengual Covas, Cala Figuera, Mallorca,

Spain. Writing f(x) in the form f(x) =
1 + sin(x/2)

cos(x/2)
, the equality

to be proved becomes equivalent toÅ
1 + sin

α

2

ã
cos

β

2
cos

γ

2
+

Ç
1 + sin

β

2

å
cos

γ

2
cos

α

2
+
Å
1 + sin

γ

2

ã
cos

α

2
cos

β

2

=
Å
1 + sin

α

2

ãÇ
1 + sin

β

2

åÅ
1 + sin

γ

2

ã
.

Expanding out,

∑

cyclic
cos

α

2
cos

β

2
+

∑

cyclic
sin

α

2
cos

β

2
cos

γ

2

= 1 +
∑

cyclic
sin

α

2
+

∑

cyclic
sin

α

2
sin

β

2
+ sin

α

2
sin

β

2
sin

γ

2
(1)

Now,

sin
α

2
= cos

Å
90◦ −

α

2

ã
= cos

Ç
β

2
+
γ

2

å
= cos

β

2
cos

γ

2
− sin

β

2
sin

γ

2

With this and two similar results, we find

∑

cyclic
sin

α

2
=

∑

cyclic
cos

α

2
cos

β

2
−

∑

cyclic
sin

α

2
sin

β

2
.

Thus, in order to prove (1) it suffices to prove that

∑

cyclic
sin

α

2
cos

β

2
cos

γ

2
= 1 + sin

α

2
sin

β

2
sin

γ

2
. (2)
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But this is virtually immediate, for

∑

cyclic
sin

α

2
cos

β

2
cos

γ

2
− sin

α

2
sin

β

2
sin

γ

2

= sin
α

2
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cos
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2
− sin
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2
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γ
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2
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γ

2
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= sin

α

2
cos
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β

2
+
γ

2

å
+ cos

α

2
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Ç
β

2
+
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2
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= sin

α

2
cos
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α

2

ã
+ cos

α

2
sin

Å
90◦ −

α

2

ã
= sin2 α

2
+ cos2

α

2
= 1,

which is equivalent to (2).

Solution 2 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. Observe that

tan(x/2) =
sin(x/2)

cos(x/2)
=

2 sin(x/2) cos(x/2)

2 cos2(x/2)
=

sinx

1 + cosx
,

from which it follows that

tan

Ç
π + x

4

å
=

sin
Ä
π+x

2

ä
1 + cos

Ä
π+x

2

ä =
cos(x/2)

1− sin(x/2)
= f(x).

Moreover, if A, B , and C are any angles satisfying A+B+C = π ,
then

− tanC = − tan(π −A−B) = tan(A+B) =
tanA+ tanB

1− tanA tanB
,

or
tanA+ tanB + tanC = tanA · tanB · tanC.

Because α, β , γ are the angles of a triangle,

π + α

4
+
π + β

4
+
π + γ

4
=

3π + α+ β + γ

4
= π.
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Therefore,

f(α) + f(β) + f(γ) = tan

Ç
π + α

4

å
+ tan

Ç
π + β

4

å
+ tan

Ç
π + γ

4

å
= tan

Ç
π + α

4

å
· tan

Ç
π + β

4

å
· tan

Ç
π + γ

4

å
= f(α) · f(β) · f(γ).

Solution 3 by the proposer. We remark that

cos(α/2)

1− sin(α/2)
=

1 + sin(α/2)

cos(α/2)
=

1 + cos((π − α)/2)

sin((π − α)/2)
.

Now, let u =
π − α

2
, v =

π − β
2

, w =
π − γ

2
. Then, u+v+w = π

(so that u, v, w are the angles of a triangle) and we are reduced to
proving that

1 + cosu

sinu
+

1 + cos v

sin v
+

1 + cosw

sinw
=

1 + cosu

sinu
·
1 + cos v

sin v
·
1 + cosw

sinw
.

Since
1 + cosu

sinu
=

2 cos2(u/2)

2 sin(u/2) cos(u/2)
=

1

tan(u/2)
the latter is

equivalent to

1

tan(u/2)
+

1

tan(v/2)
+

1

tan(w/2)
=

1

tan(u/2) tan(v/2) tan(w/2)
.

We are done since this is equivalent to the well-known relation

tan(u/2) tan(v/2) + tan(v/2) tan(w/2) + tan(w/2) tan(u/2) = 1

which immediately results from w
2

= π−u−v
2

and

tan(w/2) =
1

tan((u+ v)/2)
=

1− tan(u/2) tan(v/2)

tan(u/2) + tan(v/2)
.

Also solved by Rovsen Pirkuliyev, Sumgait City, Azerbaija, Vish-
wesh Ravi Shrimali, Jaipur, India and Daniel Văcaru, Pites, ti, Roma-
nia.
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E–110. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Homer and Flanders have an appointment at a
certain time, and each will arrive at the meeting place with a delay
between 0 and 1 hour, with all pairs of delays equally likely. The
first to arrive will wait for 20 minutes and will leave if the other
has not yet arrived. What is the probability that they will meet?

Solution 1 by Henry Ricardo, Westchester Area Math Circle,
New York, USA. If we represent Homer’s arrival time after the
appointment time by x and Flanders’ arrival time by y , then x
and y are independent random variables. Furthermore, the square
of side 60 (minutes) given by {(x, y) : 0 ≤ x ≤ 60, 0 ≤ y ≤ 60}
represents all the equally likely possibilities of the arrivals of Homer
and Flanders at the meeting place.

E-110. Homer and Flanders have an appointment at a certain time, and
each will arrive at the meeting place with a delay between 0 and 1 hour,
with all pairs of delays equally likely. The first to arrive will wait for 20
minutes and will leave if the other has not yet arrived. What is the
probability that they will meet?

Solution by Henry Ricardo, Westchester Area Math Circle

If we represent Homer’s arrival time after the appointment time by x and
Flanders’ arrival time by y, then x and y are independent random variables.
Furthermore, the square of side 60 (minutes) given by
{(x, y) : 0 ≤ x ≤ 60, 0 ≤ y ≤ 60} represents all the equally likely
possibilities of the arrivals of Homer and Flanders at the meeting place.

The area A is bounded by the two lines y = x+ 20 and y = x− 20, so that
inside A we have |x− y| ≤ 20. It follows that the two will meet only if their
arrival times x and y lie in region A. Thus the probability of their meeting
is given by the ratio of the area A to the area of the square:

3600 −
(
40·40
2

+ 40·40
2

)

60 · 60 =
5

9
.

Scheme for solving problem E-110 (Solution 1)

The area A is bounded by the two lines y = x+20 and y = x−20,
so that inside A we have |x− y| ≤ 20. It follows that the two will
meet only if their arrival times x and y lie in region A. Thus the
probability of their meeting is given by the ratio of the area A to
the area of the square:

3600 −
Ä

40·40
2

+ 40·40
2

ä
60 · 60

=
5

9
.

Solution 2 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. The figure below
depicts the pair of delays, with Homer’s delay indicated along the
horizontal axis and Flanders’ delay indicated along the vertical axis.



80 Arhimede Mathematical Journal

The two will meet if the delay pair falls within the center diagonal
section (the non-shaded section). Because all pairs of delays are
equally likely, the probability the two will meet is given by the ratio
of the area of the unshaded region to the area of the full square.
Thus, the probability the two will meet is

1− 2 ·
1

2
·

2

3
·

2

3
= 1−

4

9
=

5

9
.

will meet

miss

miss

0.0 0.2 0.4 0.6 0.8 1.0
H

0.2

0.4

0.6

0.8

1.0
F

Scheme for solving problem E-110 (solution 2)

Solution 3 by José Gibergans-Báguena and the proposer, both
at BarcelonaTech, Barcelona, Spain. Let us use as a sample
space the unit square, whose elements are the possible pairs of
delays for the two of them. Our interpretation of equally likely
pairs of delays is to let the probability of a subset of the sample
space E equal to its area. This probability law satisfies the three
probability axioms. The event that Homer and Flanders will meet
is the shaded region in the figure and its probability is

p =
area(F )

area(E)
= 1−

4

9
=

5

9
.

E–111. Proposed by Todor Zaharinov, Sofia, Bulgaria. Prove that
if n is a nonnegative integer, then 2023 divides

682n+1 + 197 · 512n+1.
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2/3

2/3

1/3

1/3

Scheme for solving problem E-110 (Solution 3)

Solution 1 by José Gibergans-Báguena, BarcelonaTech, Ter-
rasa, Spain. We have to see that there exists an integer m such
that:

682n+1 + 197 · 512n+1 = 2023 ·m
We will prove this using mathematical induction. Indeed,

• For n = 1 we have

683 + 197 · 513 = 2023 · 13073

• For n = k we assume that is true. Then

682k+1 + 197 · 512k+1 = 2023 ·m

and
197 · 512k+1 = 2023 ·m− 682k+1 (1)

• Now we have prove that is true for n = k + 1

682(k+1)+1 + 197 · 512(k+1)+1 = 682k+3 + 197 · 512k+1 · 512

and substituting (1) into the right hand of the above equality,
we get

682k+3+
Ä
2023 ·m− 682k+1

ä
·512 = 2023·512·m+682k+1

Ä
682 − 512

ä
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= 2023 · 512 ·m+ 682k+1 · 2023 = 2023 ·
Ä
512 ·m+ 682k+1

ä
,

which is divisible by 2023.

Solution 2 by Miguel Amengual Covas, Cala Figuera, Mallorca,
Spain. For n = 0, the given sum adds up to 10115, a multiple of
2023.

Suppose n ≥ 1. We have

682n+1 + 197 · 512n+1 = (4 · 17)2n+1 + 197 · (3 · 17)2n+1

= 172n+1(42n+1 + (1 + 196) · 32n+1)

= 172 · 172n−1((42n+1 + 32n+1) + 196 · 32n+1), (1)

where the exponent 2n− 1 in (1) is a positive integer (being n ≥ 1).

Since 42n+1 + 32n+1 = (4 + 3)
2n∑

j=0

42n(−3)j = 7
2n∑

j=0

42n(−3)j and

196 = 7× 28, we rewrite (1) in the form

172 · 7

172n−1

Ñ
2n∑

j=0

42n(−3)j + 28 · 32n+1

é
,

so that

682n+1 + 197 · 512n+1 = 2023


172n−1

Ñ
2n∑

j=0

42n(−3)j + 28 · 32n+1

é
,

a multiple of 2023. This completes the proof.

Solution 3 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. If n = 0, then

68 + 197 · 51 = 17(4 + 3 · 197) = 172 · 7 · 5,

which is divisible by 2023 = 172 · 7. For n ≥ 1,

682n+1 + 197 · 512n+1 = 172n+1(42n+1 + 197 · 32n+1),
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which is clearly divisible by 172 . It therefore suffices to show that
42n+1 + 197 · 32n+1 is divisible by 7. But

197 ≡ 1 (mod 7), and 4 ≡ −3 (mod 7),

so

42n+1 +197 ·32n+1 ≡
Ä
(−3)2n+1 + 32n+1

ä
(mod 7) ≡ 0 (mod 7).

Solution 4 by Henry Ricardo, Westchester Area Math Circle,
New York, USA and Rovsen Pirguliyev, Sumgait City, Azer-
baijan (same solution). First we note that 2023 = 17 · 119 =
17(68 + 51). Now we have

682n+1 + 197 · 512n+1 = 682n(68 + 197 · 51) − 197 · 682n · 51

+ 512n(197 · 51)

= 682n(5 · 2023) − 51 · 197(682n − 512n)

= 5 · 682n · 2023 − 3 · 17 · 197(68 + 51) ·K
= 2023 (5 · 682n − 3 · 197 ·K),

where we have used the identity

682n−512n = (68+51) ·
2n−1∑

j=0

(−1)j 682n−1−j ·51j = 119 ·K, K ∈ N.

Solution 5 by Henry Ricardo, Westchester Area Math Circle,
New York, USA; Daniel Văcaru, Pites, ti, Romania and Ioan
Viorel Codreanu, Satulung, Maramures, Romania (same solu-
tion). We proceed by induction. Indeed, for n = 0, we see that
681 + 197 · 511 = 10, 115 = 5 · 2023. Assuming that 682n+1 + 197 ·
512n+1 = 2023K, K ∈ N, for some positive value of n, we see that

682(n+1)+1 + 197 · 512(n+1)+1 = 682(682n+1 + 197 · 512n+1)

+ 197 · 512n+1(512 − 682)

= 682 · 2023K − 197 · 512n+1(2023)

= 2023 (682K̇ − 197 · 512n+1),

and our inductive proof is complete.
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Solution 6 by Michel Bataille, Rouen, France. Let Xn = 682n+1+
197 · 512n+1 . Since 2023 = 7 × 172 , we have to show that 7 and
172 divide Xn for every n ≥ 0.
Modulo 7, we have 68 ≡ 5 ≡ −2, 197 ≡ 1, 51 ≡ 2, hence
Xn ≡ (−2)2n+1 + 22n+1 = 0. Thus 7 divides Xn .
Since 68 = 4× 17 and 51 = 3× 17, we see that

Xn = 172n+1(42n+1 + 197 · 32n+1)

and therefore 172 certainly divides Xn if n ≥ 1. In addition, it is
readily checked that X0 = 17(4 + 3 · 197) = 172 · 35 and 172 also
divides X0 . The conclusion follows.

Solution 7 by the proposer. Let

F (n) = 682n+1 + 197 · 512n+1; n ≥ 0.

For n = 0, F (0) = 68+197 ·51 = 10115 = 5 ·2023, so 2023 | F (0).

Let n > 0.

F (n) = 682n+1 + 197 · 512n+1 =

= 68(682n − 512n) + (68 + 197 · 51)512n =

= 68(682n − 512n) + 5 · 2023 · 512n

From identity

a2n − b2n = (a2 − b2) · (a2n−2 + a2n−4b2 + · · ·+ a2b2n−4 + b2n−2)

hence 682 − 512 = 2023 divides (682n − 512n). It follows that
2023 | F (n) for all integers n ≥ 0.

Also solved by Vishwesh Ravi Shrimali, Jaipur, India and José
Luis Díaz-Barrero, Barcelona, Spain.
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E–112. Proposed by Mihaela Berindeanu, Bucharest, Romania.
In the acute triangle ABC, F is the foot of the altitude from A
and D,E are the projections of F on AB , respectively AC . The
tangents to the circumcircle 4ADE in D and E intersect in X .
If AX ∩BC = {Y }, prove that triangle ABY and ACY have the
same area.

Solution 1 by Miguel Amengual Covas, Cala Figuera, Mallorca,
Spain. Since a median bisects the area of a triangle, it suffices to
show that BY = Y C .

By a standard mean proportion1, applied to right-angled triangles
ABF and AFC ,

AB ·AD = AF 2 = AC ·AE.

Thus
AB

AC
=
AE

AD
, (1)

making triangles ABC and AED similar (S-A-S) with ∠ABC =
∠DEA and ∠BCA = ∠ADE .

B F Y

A

C

D

E

X

ϕ′
ϕ

1Leg’s theorem
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Since the tangents to the circumcircle of a triangle at two of its
vertices meet on the symmedian from the third vertex, AY is the
symmedian of 4ADE at A. And because AY intersects DE at
X , then

XE

DX
=
AE2

AD2
= (from (1)) =

AB2

AC2
. (2)

We put ∠BAY = ϕ and ∠Y AC = ϕ′ . By the law of sines, applied
to the triads 4ABY , 4AY C , 4ABC and 4ADX , 4AXE ,
4ABC , we get

BY

Y C
=
BY/AY

Y C/AY
=

sinϕ
sin(∠ABY )

sinϕ′

sin(∠Y CA)

=

sinϕ
sin(∠ABC)

sinϕ′

sin(∠BCA)

=
sinϕ

sinϕ′
·
AB

AC

and

XE

DX
=
XE/AX

DX/AX
=

sinϕ′

sin(∠XEA)

sinϕ
sin(∠ADX)

=

sinϕ′

sin(∠DEA)

sinϕ
sin(∠ADE)

=

sinϕ′

sin(∠ABC)

sinϕ
sin(∠BCA)

=
sinϕ′

sinϕ
·
AB

AC
.

Multiplying up the preceding, we obtain

BY

Y C
·
XE

DX
=
AB2

AC2
,

which implies, by (2), that BY = Y C and we are done.

Solution 2 by Michel Bataille, Rouen, France. Since the circle
with diameter AF passes through D and E , we have ∠(DE,DA) =
∠(FE, FA). Since FE ⊥ AC and FA ⊥ BC , it follows that
∠(DE,DA) = ∠(CA,CB). As a result, BC is antiparallel to DE
in the angle ∠BAC = ∠DAE (see [1] p. 145). Observing that the
line AX is the symmedian from A in 4DAE (see [1] p. 146), we
deduce that AX bisects BC . This means that Y is the midpoint
of BC and consequently

Area(ABY ) = Y B · Y A sin(∠BY A)

= Y C · Y A sin(∠CY A) = Area(ACY ).

[1] M. Bataille, Characterizing a Symmedian, Crux Mathematico-
rum, Vol. 43(4), April 2017, pp. 145-150
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Scheme for solving problem E-112.

Solution 3 by the proposer. Denote AX ∩DE = {A}

4ABY and 4ACY have the same altitude (AF ), so to prove
that σ(ABY ) = σ(ACY ) it is enough to show that BY = Y C .

BY

Y C
=
σ(ABY )

σ(ACY )
=
AB ·AY · sin(BAY ) ·

1

2

AC ·AY · sin(CAY ) ·
1

2

=
AB · sin(BAY )

AC · sin(CAY )

• Prove that
AD

AE
=
AC

AB
. Indeed, XD and XE are tangents to

circumcircle of 4ADE ⇒ XA is symmedian and

DZ

DE
=
AD2

AE2

AD2

AE2
=
σ(DAZ)

σ(EAZ)
=
AD ·AZ · sin(DAZ)

AE ·AZ · sin(EAZ)
⇒

sin(DAZ)

sin(EAZ)
=
AD

AE

According to the Leg Rule
AF 2 = AD ·AB
AF 2 = AE ·AC

´
⇒

AD

AE
=
AC

AB
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Proposal for publication

Mihaela Berindeanu, teacher, Bucharest

13 iulie 2022

In the acute triangle ABC, F is the foot of the altitude from A and D,E are the projections of F on AB,
respectively AC. The tangents to the circumcircle 4ADE in D and E intersect in X. If AX ∩BC = {Y }, prove
that ABY and ACY are equivalent triangles.

Solution:
Denote AX ∩DE = {A}

Figura 1:

4ABY and 4ACY have the same altitude (AF ), so to prove that σ(ABY ) = σ(ACY ) it is enough to show
that BY = Y C.

BY

Y C
=
σ(ABY )

σ(ACY )
=
AB ·AY · sin(BAY ) · 1

2

AC ·AY · sin(CAY ) · 1
2

=
AB · sin(BAY )

AC · sin(CAY )

� Show that
AD

AE
=
AC

AB

XD and XE are tangents to circumcircle of 4ADE ⇒ XA is symmedian ⇒ DZ

DE
=
AD2

AE2
⇒

AD2

AE2
=
σ(DAZ)

σ(EAZ)
=
AD ·AZ · sin(DAZ)
AE ·AZ · sin(EAZ) ⇒

sin(DAZ)

sin(EAZ)
=
AD

AE

According to the Leg Rule
AF 2 = AD ·AB
AF 2 = AE ·AC

}
⇒ AD

AE
=
AC

AB

� Show that ABY and ACY are equivalent triangles.

From
AD

AE
=
AC

AB
⇒ sin(DAZ)

sin(EAZ)
=

sin(BAY )

sin(CAY )
=
AC

AB
⇒ σ(ABY ) = σ(ACY ), so 4ABY and 4ACY are

equivalent triangles.

1

Scheme for solving problem E-112

• Prove that ABY and ACY are equivalent triangles.

From
AD

AE
=

AC

AB
⇒

sin(DAZ)

sin(EAZ)
=

sin(BAY )

sin(CAY )
=

AC

AB
⇒

σ(ABY ) = σ(ACY ), so 4ABY and 4ACY are equivalent
triangles.

Also solved by José Luis Díaz-Barrero, BarcelonaTech, Barcelona,
Spain.



Volume 10, No. 1, Spring 2023 89

Easy–Medium Problems

EM–107. Proposed by Mihály Bencze, Braşov, Romania. Prove
that

∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
= n

(
2n− 1

n

)
.

Solution 1 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. For n = 0, the
indicated expression reduces to 0 = 0, while for n = 1, the expres-
sion reduces to 1 = 1. Now, let n > 1. On the one hand,

∑

0≤i,j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)

= 2
∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
+

n∑

j=0

(−1)2j−1 · 2j
(
n

j

)2

= 2

Ñ
∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
−

n∑

j=0

j

(
n

j

)2
é
.

On the other hand,

∑

0≤i,j≤n
(−1)i+j−1(i+j)

(
n

i

)(
n

j

)
=

n∑

i=0

(−1)i
(
n

i

)
n∑

j=0

(−1)j−1(i+j)

(
n

j

)
.

By the binomial theorem,

n∑

j=0

(
n

j

)
xj = (1 + x)n and

n∑

j=0

j

(
n

j

)
xj−1 = n(1 + x)n−1.

It follows that for n > 1,

n∑

j=0

(−1)j
(
n

j

)
=

n∑

j=0

(−1)j−1j

(
n

j

)
= 0.

Thus,
∑

0≤i,j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
= 0
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and
∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
=

n∑

j=0

j

(
n

j

)2

.

But,
n∑

j=0

j

(
n

j

)2

=
n∑

j=0

j

(
n

j

)(
n

n− j

)

is the coefficient of xn−1 in the product n(1 + x)n−1(1 + x)n =
n(1 + x)2n−1 , so

∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
= n

(
2n− 1

n− 1

)
= n

(
2n− 1

n

)
.

Solution 2 by G. C. Greubel, Newport News, VA, USA. This sum
is the same as

Sn =
n∑

j=0

j∑

i=0

(−1)i+j (i+ j)

(
n

i

)(
n

j

)

or

Sn =
n∑

j=0

n∑

i=0

(−1)j (j + 2i)

(
n

i

)(
n

j + i

)
.

Considering the summation with the index j then

S1 =
n∑

j=0

(−1)j (j + 2i)

(
n

j + i

)

= (−1)n
(

i(i+ 1)

(n+ i)(n+ i+ 1)
+
n(n+ 1)

n+ i+ 1

)(
n− 2

−i− 1

)
−
(
n− 2

i− 1

)

+
2 i2

n

(
n

i

)
+ 2 (−1)n i

(
n− 1

−i− 1

)

From this it can be seen that if i ≥ 0 then

S1 =
2 i2

n

(
n

i

)
−
(
n− 2

i− 1

)
.
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This leads to

Sn =
j∑

i=0

(
n

i

)(
2 i2

n

(
n

i

)
−
(
n− 2

i− 1

))

=
2

n

n∑

i=0

i2
(
n

i

)2

−
n∑

i=0

(
n

i

)(
n− 2

i− 1

)

=
2

n

n∑

i=0

i2
(
n

i

)2

−
n−1∑

i=0

(
n

i+ 1

)(
n− 2

i

)

=
2

n
n2

(
2n

n

)
−

n

2 (2n− 1)

(
2n

n

)

=
n

2

(
2n

n

)

and
n∑

j=0

j∑

i=0

(−1)i+j (i+ j)

(
n

i

)(
n

j

)
=
n

2

(
2n

n

)
.

This result is the same as that proposed in the problem.

Solution 3 by the proposer. Setting ak =
Ä
n

k

ä
xk in the identity

2
∑

0≤i<j≤n
aiaj =

(
n∑

k=0

ak

)2

−
n∑

k=0

a2
k

yields

2
∑

0≤i<j≤n
xi+j

(
n

i

)(
n

j

)
=

(
n∑

k=0

(
n

k

)
xk
)2

−
n∑

k=0

((
n

k

)
xk
)2

= (1 + x)2n −
n∑

k=0

x2k

(
n

k

)2

.

Differentiating and rearranging terms, we get

∑

0≤i<j≤n
(i+ j)xi+j−1

(
n

i

)(
n

j

)
= n(1 + x)2n−1 −

n∑

k=0

kx2k−1

(
n

k

)2

.



92 Arhimede Mathematical Journal

Finally, putting x = −1 in the preceding expressions, we obtain

∑

0≤i<j≤n
(−1)i+j−1(i+ j)

(
n

i

)(
n

j

)
= −

n∑

k=0

k(−1)2k−1

(
n

k

)2

=
n∑

k=0

k

(
n

k

)2

=
n

2

(
2n

n

)
= n

(
2n− 1

n

)
.

Also solved by Michel Bataille, Rouen, France.

EM–108. Proposed by Miguel Amengual Covas, Cala Figuera,
Mallorca, Spain. Triangles are erected on the altitudes AA′ , BB′ ,
CC′ of a triangle ABC , whose other sides are parallel to the other
altitudes. Let Sa , Sb , Sc denote the areas of these triangles and
let S be the area of 4ABC . Prove that

4

S
= 2

∑

cyclic

1
√
SaSb

−
∑

cyclic

1

Sa
.

Solution 1 by the proposer. Let a, b, c respectively denote the
lengths of the sides BC , CA, AB and let h be the altitude from
A to BC .

A B

C

A′

B′

D

C′

Let the parallel to BB′ through A and the parallel to CC′ through
A′ intersect at D . Since CC′ is perpendicular to AB , as is altitude,
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it follows that A′D is perpendicular to AB . Thus altitude AA′

and A′D form an angle whose sides are perpendicular to those of
∠ABC , making

∠AA′D = ∠ABC.

Similarly, ∠A′AD = ∠BCA. Therefore triangles AA′D and ABC
are similar (A-A-A) yielding

Sa

S
=

Ç
AA′

BC

å2

=

Ç
h

a

å2

,

where Sa denotes the area of 4AA′D . Hence

1

Sa
=

a2

h2S
= (substituting for h from ah = 2S) =

a4

4S3
,

and cyclically.

Consequently,
1

√
SaSb

=
a2b2

4S3
,

and cyclically.

Thus

2
∑

cyclic

1
√
SaSb

−
∑

cyclic

1

Sa
=

1

4S3

(
2
∑

cyclic

a2b2 −
∑

cyclic

a4

)

=
2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

4S3
,

in which we use the Heron’s formula

16S2 = ((a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c))

= 2a2b2 + 2b2c2 + 2c2a2 −
Ä
a4 + b4 + c4

ä
to write

2
∑

cyclic

1
√
SaSb

−
∑

cyclic

1

Sa
=

16S2

4S3
=

4

S
,

as desired.
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Solution 2 by Michel Bataille, Rouen, France. Let A′′ be the
third vertex of the triangle constructed on the altitude AA′ . Since
A′A′′ is parallel to BB′ , we have A′A′′ ⊥ CA. We also have
AA′ ⊥ BC so that ∠(A′A′′, A′A) = ∠(CA,CB).
Similarly, ∠(AA′, AA′′) = ∠(BC,BA) and it follows that the tri-
angles AA′A′′ and BCA are similar. We deduce that

S

Sa
=

Ç
BC

AA′

å2

=

Ç
a

ha

å2

.

[Here and in what follows, we use the familiar notations for the
elements of 4ABC .]
In the same way, we obtain S

Sb
=
(
b
hb

)2
, S
Sc

=
(
c
hc

)2
and therefore

S

(
2
∑

cyclic

1
√
SaSb

−
∑

cyclic

1

Sa

)
= 2

∑

cyclic

ab

hahb
−
∑

cyclic

a2

h2
a

= 2

(
a2b2

4S2
+
b2c2

4S2
+
c2a2

4S2

)
−
a4 + b4 + c4

4S2

(since aha = bhb = chc = 2S ).
Finally, we obtain

S

(
2
∑

cyclic

1
√
SaSb

−
∑

cyclic

1

Sa

)
=

2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

4S2

=
16S2

4S2
= 4

and the required result follows.

EM–109. Proposed by Michel Bataille, Rouen, France. (Correc-
tion.) Let p be an odd prime and let r be an integer with 0 ≤ r < p.
Prove that

p−1∑

k=r

(−1)k−r
(
k

r

)
≡ 2−r (mod p).

Solution by the proposer. Let Sr denote the sum on the left.
Changing the index of summation and because

Ä
k

r

ä
=

Ä
k

k−r

ä
, we

have

Sr =
p−1−r∑

j=0

(−1)j
(
r + j

j

)
.



Volume 10, No. 1, Spring 2023 95

We remark that for 0 ≤ j ≤ p− 1− r ,

j!

(
r + j

j

)
= (r + j)(r + j − 1) · · · (r + 1)

≡ (−1)j(p− r − j)(p− r − (j − 1)) · · · (p− r − 1) (mod p),

that is,

j!

(
r + j

j

)
≡ (−1)jj!

(
p− r − 1

j

)
(mod p).

Since j! is coprime with p, it follows that
(
r + j

j

)
≡ (−1)j

(
p− r − 1

j

)
(mod p)

and therefore

Sr ≡
p−1−r∑

j=0

(
p− r − 1

j

)
= 2p−1−r (mod p).

Finally, since we have 2p−1 ≡ 1 (mod p) (by the Fermat Little
Theorem), we see that Sr ≡ 2−r (mod p).

EM–110. Proposed by Goran Conar, Varaždin, Croatia. Let α1, α2, . . . , αn
be angles of a convex polygon with n ≥ 3 vertices. Prove that the
following inequality holds

sin
Åα1

π

ã
sin

Åα2

π

ã
. . . sin

Åαn
π

ã
+ cos

Åα1

π

ã
cos

Åα2

π

ã
. . . cos

Åαn
π

ã
< 1.

Solution 1 by the proposer. We use second Minkowski’s inequal-
ity

(
n∏

i=1

(ai + bi)
wi

) 1
Wn

≥
(
n∏

i=1

awii

) 1
Wn

+

(
n∏

i=1

bwii

) 1
Wn

,

where ai, bi > 0 , i ∈ {1, 2, . . . , n} , and wi > 0, i ∈ {1, 2, . . . , n}, Wn =
w1 + w2 + . . . + wn . Specially, for w1 = w2 = . . . = wn = 1

n
we

have Wn = 1 and hence

n

Ã
n∏

i=1

(ai + bi) ≥ n

Ã
n∏

i=1

ai + n

Ã
n∏

i=1

bi . (1)
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Putting ai = sin2
Ä
αi
π

ä
, bi = cos2

Ä
αi
π

ä
= 1 − ai, i ∈ {1, 2, . . . , n} in

(1) we get

1 ≥ n

Ã
n∏

i=1

sin2
Åαi
π

ã
+ n

Ã
n∏

i=1

cos2

Åαi
π

ã
> n

Ã
n∏

i=1

sinn
Åαi
π

ã
+ n

Ã
n∏

i=1

cosn
Åαi
π

ã
=

n∏

i=1

sin
Åαi
π

ã
+

n∏

i=1

cos
Åαi
π

ã
.

While polygon is convex it is satisfied 0 < αi < π, ∀i ∈ {1, 2, . . . , n},
i.e. αi

π
∈ (0, 1) ⊂

Ä
0, π

2

ä
, ∀i ∈ {1, 2, . . . , n} so sin

Ä
αi
π

ä
, cos

Ä
αi
π

ä
∈

(0, 1), i ∈ {1, 2, . . . , n}. This we have used in last inequality.

Solution 2 by Michel Bataille, Rouen, France. Let f and g
be the functions defined on (0, π

2
) by f(x) = ln(sinx), g(x) =

ln(cosx). Since their second derivatives f ′′(x) = −1
sin2 x

, g′′(x) =
−1

cos2 x
are negative, the functions f and g are concave. It follows

that
n∑

k=1

ln(sin(αk/π)) ≤ n ln

Ç
sin

α1 + · · ·+ αn

nπ

å
= n ln

Ç
sin

Ç
n− 2

n

åå
n∑

k=1

ln(cos(αk/π)) ≤ n ln

Ç
cos

α1 + · · ·+ αn

nπ

å
= n ln

Ç
cos

Ç
n− 2

n

åå
and in consequence
n∏

k=1

sin(αk/π) ≤
Ç

sin

Ç
1−

2

n

åån
,

n∏

k=1

cos(αk/π) ≤
Ç

cos

Ç
1−

2

n

åån
.

Note that we have 1
3
≤ 1 − 2

n
≤ 1. It follows that sin

Ä
1− 2

n

ä
≤

1 − 2
n

and therefore
Ä
sin

Ä
1− 2

n

ään ≤ Ä
1− 2

n

än ≤ e−2 (using the
known fact that the sequence

ÄÄ
1− 2

n

änä
n≥3

is increasing with

limit e−2 as n→∞). Also, we have cos
Ä
1− 2

n

ä
≤ cos 1

3
< 1, henceÄ

cos
Ä
1− 2

n

ään ≤ Ä
cos 1

3

än ≤ Ä
cos 1

3

ä3
. Thus we obtain

n∏

k=1

sin(αk/π) +
n∏

k=1

cos(αk/π) ≤ e−2 +

Ç
cos

1

3

å3

and the required result follows since e−2 +
Ä
cos 1

3

ä3
< 1.

Also solved by José Gibergans-Báguena and José luis Díaz-Barrero
both at BarcelonaTech, Barcelona, Spain.
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EM–111. Proposed by José Luis Díaz-Barrero, BarcelonaTech,
Barcelona, Spain. How many are the different pairs of integers x
and y from 1 to 2023, for which (x2 + y2)/49 is an integer? (The
pairs (x, y) and (y, x) are considered equal).

Solution 1 by Michel Bataille, Rouen, France. First, we show
that x2 + y2 is divisible by 49 if and only if x and y are both
divisible by 7.
Clearly, if 7 divides x and y , then 49 divides x2 and y2 , hence
also x2 +y2 . Conversely, suppose that 49 divides x2 +y2 . Assume
that 7 does not divide y . Then, y is invertible modulo 7, meaning
that there exists and integer a such that ay ≡ 1 (mod 7). We
deduce that

0 ≡ a2(x2 + y2) ≡ (ax)2 + 1 (mod 7)

and therefore −1 is a square modulo 7, which is false (the squares
modulo 7 are 0, 1, 2, 4). Thus, 7 divides y and similarly, 7 divides
x.
Back to the problem, since 2023 = 7×289, there are 289 multiples
of 7 between 1 and 2023 (included), hence there are 289 × 289
ordered pairs (x, y) such that 49 divides x2 + y2 . Each of these
pairs (x, y) with x 6= y can be coupled with the pair (y, x) and
there are 289 pairs of the form (a, a). Thus, the number of non-
ordered pairs is 289×288

2
+ 289 = 41905.

Solution 2 by the proposer. We claim that x2 +y2 ≡ 0 (mod 49)
if and only if x ≡ 0 (mod 7) and y ≡ 0 (mod 7). Indeed,

(⇐) Obvious.
(⇒) Assume that x2 + y2 ≡ 0 (mod 49). To see that x ≡ 0

(mod 7) and y ≡ 0 (mod 7) we write x = 7x1 + α and y =
7y1 + β , where x1, y1 are nonnegative integers and α, β ∈
{0,±1,±2,±3}. Then,

x2 + y2 = (7x1 + α)2 + (7y1 + β)2

= 49(x2
1 + y2

1) + 14(αx1 + βy1) + α2 + β2.

Since x2 + y2 ≡ 0 (mod 49), then x2 + y2 ≡ 0 (mod 7) and
α2 + β2 ≡ 0 (mod 7) on account of the preceding expression.
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The maximum value that can be taken by α2 + β2 is (±3)2 +
(±3)2 = 18. The only integers between 0 and 18 divisible by
7 are 0, 7, 14. The values of α2 and β2 are 0, 1, 4, 9 and the
possible multiple of 7 is α2 + β2 = 0. So, the claim is proven.

Let n be the number of positive integers smaller or equal than
2023 that are multiple of 7. That is,

n =

ú
2023

7

ü
= 289.

In this case the number of different pairs of integers x or y (x 6= y)
for which x2 + y2 ≡ 0 (mod 49) is

Ä
289

2

ä
= 41616. Furthermore,

there are 289 pairs of the form (x, x). So, the number of different
pairs is equal to 41616 + 289 = 41905

EM–112. Proposed by Toma-Ioan Dumitrescu, Bucharest, Roma-
nia. Find all surjective functions f : (0,+∞) → (0,+∞) such
that for every positive reals x, y , satisfy

f

(
xf(x)

f(y)

)
= f4(y)f

Ç
f(y)

x

å
.

Solution 1 by Marc Felipe i Alsina, BarcelonaTech, Bescanó,
Girona. Since f is surjective, we may take y such that f(y) = x,
to obtain

f(f(x)) = x4 · f(1).

Alternatively, we can take y such that f(y) = xf(x) instead:

f(1) = (xf(x))4 · f(f(x)).

Substituting the expression for f(f(x)), we obtain

f(1) = x4f4(x) · x4 · f(1)

from which we can isolate f(x):

f(x) =
1

x2
.
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Solution 2 by Michel Bataille, Rouen, France. It is easily checked
that the function x 7→ 1

x2 is a solution. We show that there is no
other solution.
Let f be a solution and let a = f(1). With x = y = 1, the given
equation yields a = a4f(a), hence

f(a) =
1

a3
. (1)

Let z ∈ (0,∞). Since f is surjective, there exists y ∈ (0,∞) such
that z = f(y). We deduce that for x, z > 0

f

Ç
xf(x)

z

å
= z4f

Åz
x

ã
. (2)

With z = x, (2) gives f(f(x)) = ax4 , which, with x = 1, provides
f(a) = a. Recalling (1), it follows that a = 1, from which we
deduce that f(f(x)) = x4 for all x > 0. As a result, f is injective
(for u, v > 0, f(u) = f(v) implies f(f(u)) = f(f(v)), hence
u4 = v4 , hence u = v ). Taking z = 1 in (2), we see that for
all x > 0 we have f(xf(x)) = f(1/x), hence xf(x) = 1

x
and

f(x) = 1
x2 follows.

Also solved by the proposer.
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Medium–Hard Problems

MH–107. Proposed by Michel Bataille, Rouen, France. Let a, b
be real numbers such that the polynomial x4 − ax3 + (b− a)x2 +
bx− 1 has three positive real roots. Prove that

ab ≥ 4 + |a− b|.

Solution by the proposer. Let P (x) = x4−ax3+(b−a)x2+bx−1.
From the hypothesis and P (−1) = 0, we deduce that the roots
of P (x) are −1, u, v, w where u, v, w are positive real numbers.
Vieta’s formulas then give

u+ v + w = a+ 1, uvw = 1, uv + vw + wu = b+ 1

and the required inequality can be written as (u + v + w)(uv +
vw + wu) ≥ 5 + a + b + |a− b|, that is, setting S = u2v + uv2 +
v2w + vw2 + w2u+ wu2 ,

S ≥ 2 max(u+ v + w, uv + vw + wu). (1)

(Note that a+ 1 + b+ 1 + |(a+ 1)− (b+ 1)| = 2 max(a+ 1, b+ 1).)
First, suppose that uv + vw + wu ≥ u + v + w and let T =
u2v+v2w+w2u+u+v+w . Using the arithmetic mean-geometric
mean inequality and uvw = 1, we obtain

T = (u2v + uv2w) + (v2w + uvw2) + (w2u+ u2vw)

≥ 2
√
u3v3w + 2

√
uv3w3 + 2

√
u3vw3 = 2(uv + vw + wu),

hence u2v+ v2w+w2u+ u+ v+w ≥ uv+ vw+wu+ u+ v+w
and therefore u2v + v2w + w2u ≥ uv + vw + wu.
Exchanging u and v gives uv2 + vw2 +wu2 ≥ uv + vw+wu and
by addition

S ≥ 2(uv + vw + wu) = 2 max(u+ v + w, uv + vw + wu).

If uv + vw + wu ≤ u + v + w, let m = 1
u
, n = 1

v
, p = 1

w
. Then

m,n, p > 0 with mnp = 1 and mn+np+pm ≥ m+n+p. From
the previous case, we have m2n+n2p+p2m+mn2 +np2 +pm2 ≥
2 max(mn+ np+ pm,m+ n+ p). Returning to u, v, w yields (1)
again and we are done.
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MH–108. Proposed by José Luis Díaz-Barrero, BarcelonaTech,
Barcelona, Spain. Find all positive integers n for which the equa-
tion

4 (a4
1 + a4

2 + . . .+ a4
n) = 7 (a3

1 + a3
2 + . . .+ a3

n)

has solution in the set of positive integers and determine them.

Solution by the proposer. Suppose that ak , 1 ≤ k ≤ n is a
solution. Then

n∑

k=1

Ç
a4
k −

7

4
a3
k

å
= 0.

Observe that
n∑

k=1

(ak − 1)4 =
n∑

k=1

(a4
k − 4a3

k + 6a2
k − 4ak + 1)

=
n∑

k=1

Ç
a4
k −

7

4
a3
k −

9

4
a3
k + 6a2

k − 4ak + 1

å
=

n∑

k=1

Ç
−

9

4
a3
k + 6a2

k − 4ak + 1

å
.

Since

−
9

4
a3
k + 6a2

k − 4ak = −ak
Ç

3

2
ak − 2

å2

≤ 0,

then
n∑

k=1

(ak − 1)4 ≤ n.

This inequality implies that each ak is equal to either 1 or 2. Now,
suppose x of the numbers a1, a2, . . . , an are equal to 1 and y of
them are equal to 2. Then x+y = n and the original equation gives
4(x + 16y) = 7(x + 8y). Solving this system, we get x = 8n/11
and y = 3n/11. So, the possible solutions are those for which
n ≡ 0 (mod 11). That is, if n = 11j , (j ≥ 1) then the solutions
are

1, 1, 1, . . . , 1, 1︸ ︷︷ ︸
8j

, 2, . . . , 2︸ ︷︷ ︸
3j

,

and all their permutations.

Also solved by Michel Bataille, Rouen, France; and Silvano Ros-
setto, centro Morin, Paderno del Grappa, TV, Italy, and Giovanni
Vincenzi, dept. Math. University of Salerno, Italy.
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MH–109. Proposed by Ruben Carpenter, Barcelona, Spain. Given
a triangle 4ABC , let A1 , B1 and C1 be the feet of the internal
angle bisectors from A, B and C , respectively. Further, let the
circumscribed circle ω of 4A1B1C1 intersect AB and AC at
C2 6= C1 and B2 6= B1 , respectively. Assume that circle ω is
tangent to BC . Show that either |AB| = |AC| or |AB1| = |AC2|.

Solution 1 by the proposer. We will assume |AB| 6= |AC| and
hence prove that |AB1| = |AC2|.

To solve the problem we rely on projective geometry. The key point
of our solution is the following technical result.

Lemma 1. Let A2 be the other intersection point of A1A and ω .
The cyclic quadrilateral formed by points A1 , B1 , A2 , C1 is har-
monic.

Proof. Consider the points

X = BC ∩B1C1 and Y = AA1 ∩B1C1.

Clearly X is not at infinity because the assumption that AB 6= AC
means that BC and B1C1 are not parallel. In 4AB1C1 , the
cevians AY , B1B and C1C concurr at the incenter of 4ABC .
Thus by Ceva’s Theorem,

C1Y

Y B1

·
B1C

CA
·
AB

BC1

= 1. (1)

Also, since points X ∈ B1C1 , C ∈ AB1 and B ∈ AC1 are collinear,
Menelaus’ Theorem yields

C1X

XB1

·
B1C

CA
·
AB

BC1

= −1, (2)

where lengths are directed in both Eq. 1 and Eq. 2. Dividing Eq. 1
by Eq. 2,

−1 =
C1Y

Y B1

·
XB1

C1X
= (C1B1;Y X). (3)
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Scheme for solving problem MH-109

A perspectivity centered at A1 ∈ ω onto ω is a projective transfor-
mation, and hence preserves cross ratios.

Thus, from point A1 , we project the harmonic bundle in line B1C1

(displayed in Eq. 3) onto ω :

−1 = (C1, B1;Y,X)

= (A1C1 ∩ ω,A1B1 ∩ ω;A1Y ∩ ω,A1X ∩ ω)

= (C1, B1;A2, A1).

In this step we have used the tangency condition between ω and
BC to show that the image of X is A1 . Then, points A1 , A2 , B1 ,
C1 form a harmonic quadrilateral on circle ω .

By the definition of a cyclic harmonic quadrilateral, Lemma 1 is
equivalent to the concurrence of the following three lines: the
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tangent to ω through A1 , the tangent to ω through A2 and line
B1C1 . Hence XA2 is tangent to ω .

Let O be the center of ω . We finish with the following claim.

Claim 1. The points O , A and X are collinear, and this line bi-
sects ∠C1AB1

Proof. Firstly, equation (3) implies that the pencil (AC1, AB1, AY,AX)
is harmonic. AY is the internal bisector of ∠B1AC1 , so this con-
dition implies that AX must be the external bisector of ∠B1AC1 .
Hence AX ⊥ A1A2 .

On the other hand, since XA1 and XA2 are both tangent to ω ,
then OX must be the perpendicular bisector of segment A1A2 .

Together, the above observations complete this proof.

Finally, notice that from Claim 1 we deduce that

∠OAB1 = ∠OAC2.

We also know that |OB1| = |OC2|, and both triangles share a side
of length |OA|. Hence, we have shown that 4OAB1 and 4OAC2

are oppositely congruent triangles.

We then deduce that |AB1| = |AC2|, as desired.

Solution 2 by Michel Bataille, Rouen, France. Let a = |BC|, b =
|CA|, c = |AB|, as usual. In barycentric coordinates relatively to
(A,B,C), we have A1 = (0 : b : c), B1 = (a : 0 : c), C1 = (a : b : 0)
and the equation of ω is of the form a2yz + b2zx + c2xy =
(x + y + z)(αx + βy + γz). Expressing that A1, B1, C1 are on
this circle gives

α =
bc

2
(−u+ v + w), β =

ca

2
(u− v + w), γ =

ab

2
(u+ v − w)

where here and in what follows u = a
b+c
, v = b

c+a
, w = c

a+b
.

Since ω is tangent to BC (x = 0), (y, z) = (b, c) is a double
solution to a2yz = (y + z)(βy + γz), that is, βy2 + yz(β + γ −
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a2) + γz2 = 0. We deduce that b2

c2
= γ

β
, which easily writes as

c(u+ v − w) = b(u− v + w) or, after a simple calculation,

(b− c)((b+ c)3 − a(a2 − b2 − c2 + ab+ ca− bc)) = 0. (1)

Similarly, C1 and C2 are obtained as the intersections of ω and the
line z = 0, which leads to the equation αx2+xy(α+β−c2)+βy2 =
0. One of the solution is (x, y) = (a, b) and the other one is
(βb, αa) so that C2 = (u − v + w : −u + v + w : 0). We deduce
that 2w

−−→
AC2 = (−u+ v + w)

−→
AB and |AC2| = c

2

∣∣∣1 + v−u
w

∣∣∣.
To complete the solution it remains to show that if (b+c)3−a(a2−
b2 − c2 + ab+ ca− bc) = 0, then |AC2| = |AB1|. Now, the latter
writes as 2b

a+c
=
∣∣∣1 + v−u

w

∣∣∣ or

2bc(b+ c) = |c(c+ a)(c+ b) + (b2 − a2)(a+ b+ c)|.

But using (b+ c)3 − a(a2 − b2 − c2 + ab+ ca− bc) = 0, we easily
obtain c(c+ a)(c+ b)− (b2 − a2)(a+ b+ c) = −2bc(c+ b), so we
are done.

MH–110. Proposed by José Luis Díaz-Barrero, BarcelonaTech,
Barcelona, Spain. Let xij, (1 ≤ i ≤ m, 1 ≤ j ≤ n) be nonnegative
real numbers. Find the minimum value of

n∏

j=1

(
1−

m∏

i=1

3
√
xij

1 + 2 3
√
xij

)
+

m∏

i=1

Ñ
1−

n∏

j=1

1 + 3
√
xij

1 + 2 3
√
xij

é
.

Solution 1 by Henry Ricardo, Westchester Area Math Circle,
NY, USA. In the October, 2022 issue of Octogon Mathematical
Magazine (p. 831), the proposer proves the following result using
a clever probabilistic interpretation:

Let m,n be positive integers and let aij ∈ [0, 1] for 1 ≤ i ≤ m and
1 ≤ j ≤ n. Then

n∏

j=1

(
1−

m∏

i=1

aij

)
+

m∏

i=1

Ñ
1−

n∏

j=1

(1− aij)

é
≥ 1.
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Setting aij = 3
√
xij/(1 + 2 3

√
xij) in this theorem, we see that a

lower bound of the sum of products is 1. If aij = 0 or 1 ∀i, j in the
proposer’s theorem, then the sum attains its minimum value. In
our problem, equality holds if xij = 0 ∀i, j .

Solution 2 by Michel Bataille, Rouen, France. Let Xm,n denote
the given expression. Clearly, Xm,n = 1 when xij = 0 for all i, j .
We show that 1 is the minimum value of Xm,n by showing that
Xm,n ≥ 1 for all xij ≥ 0.
We use the result obtained in the article J. L. Díaz-Barrero, Classi-
cal inequalities and applications, Arhimede Mathematical Journal,
Vol. 8, Issue 2, Problem 8, p. 200:

n∏

j=1

(
1−

m∏

i=1

yij

)
+

m∏

i=1

Ñ
1−

n∏

j=1

(1− yij)

é
≥ 1

when 0 ≤ yij ≤ 1.

Taking yij =
3√xij

1+2 3√xij
directly leads to Xm,n ≥ 1.

Solution 3 by the proposer. Putting xij = 0 in the given expres-
sion we obtain the value one. We claim that it is larger or equal

than one. Indeed, Putting aij =
3
√
xij

1 + 2 3
√
xij

in the inequality

n∏

j=1

(
1−

m∏

i=1

3
√
xij

1 + 2 3
√
xij

)
+

m∏

i=1

Ñ
1−

n∏

j=1

1 + 3
√
xij

1 + 2 3
√
xij

é
≥ 1,

we get
n∏

j=1

(
1−

m∏

i=1

aij

)
+

m∏

i=1

Ñ
1−

n∏

j=1

(1− aij)

é
≥ 1.

Since 0 ≤ aij < 1, then we can assume that aij = p[Aij] where
Aij are independent events in a probability space (E,P(E), p). It
is well known that

n⋃

j=1

(
m⋂

i=1

Aij

)
⊆

m⋂

i=1

Ñ
n⋃

j=1

Aij

é
.



Volume 10, No. 1, Spring 2023 107

Taking into account Morgan’s Law, yields

n⋃

j=1

(
m⋂

i=1

Aij

)
=

n⋂

j=1

(
m⋂

i=1

Aij

)
⊆

m⋂

i=1

Ñ
n⋂

j=1

Aij

é
=

m⋂

i=1

Ñ
n⋃

j=1

Aij

é
.

Thus,

p



n⋂

j=1

(
m⋂

i=1

Aij

)
 ≤ p



m⋂

i=1

Ñ
n⋂

j=1

Aij

é


or equivalently

1−
n∏

j=1

(
1−

m∏

i=1

aij

)
≤

m∏

i=1

Ñ
1−

n∏

j=1

(1− aij)

é
.

Equality holds when all the xij = 0 and this is the minimum value,
as claimed.

Also solved by José Gibergnas-Báguena, BarcelonaTech, Barce-
lona, Spain.

MH–111. Proposed by Félix Moreno Peñarrubia, Charles Univer-
sity, Prague, Czech Republic. Let n be a positive integer, and let
Qn = {a

b
∈ Q : 1 ≤ a, b ≤ n}. Let S be a subset of Qn with |S| = n.

Prove that there exist two distinct (not necessarily nonempty) sub-
sets A,B ⊆ S such that

∏
x∈A x =

∏
y∈B y .

Solution by the proposer. Consider an undirected graph on n
vertices labeled with numbers 1, . . . , n and for each a

b
∈ S draw

an edge between vertices a and b (there may be loops or more than
one edge between the same pair of vertices). Since the graph has
n vertices and n edges, it must have a cycle. Let v1, . . . , vn be
the vertices of the cycle in order. Place the fraction corresponding
to edge vivi+1 (indices taken cyclically) in subset A if the original
number was vi

vi+1
, place it in subset B if the original number was

vi+1

vi
. Now, note that all the terms get cancelled.
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MH–112. Proposed by José Luis Díaz-Barrero, BarcelonaTech,
Barcelona, Spain. For an integer n ≥ 3 we consider a circle con-
taining n vertices. To each vertex we assign a positive integer,
and these integers do not necessarily have to be distinct. Such
an assignment of integers is called stable if the product of any
three adjacent integers is n. For how many values of n with
3 ≤ n ≤ 2023 does there exist a stable assignment?

Solution by the proposer. Suppose n is not a multiple of 3 and
that we have a stable assignment of the numbers a1, a2, . . . , an ,
in that order on the circle. Then we have aiai+1ai+2 = n for all i,
where the indices are considered modulo n. Hence,

ai+1ai+2ai+3 = n = aiai+1ai+2,

which yields ai+3 = ai (as all numbers are positive). Through
induction, we find that a3k+1 = a1 for all integers k ≥ 0. Because
n is not a multiple of 3, the numbers 3k + 1 for k ≥ 0 take on all
values modulo n. Indeed, 3 has a multiplicative inverse modulo n,
hence k ≡ 3−1 · (b− 1) implies 3k + 1 ≡ b (mod n) for all b. We
conclude that all numbers on the circle must equal a1 . Hence, we
have a3

1 = n, where a1 is a positive integer. Hence, if n is not a
multiple of 3, then n must be a cube.

If n is a multiple of 3, then we put the numbers 1, 1, n, 1, 1, n, . . .
in that order on the circle. In that case, the product of three
adjacent numbers always equals 1 · 1 · n = n. If n is a cube, say
n = m3 , then we put the numbers m,m,m, . . . on the circle. In
that case, the product of three adjacent numbers always equals
m3 = n.

We conclude that a stable assignment exists if and only if n is a
multiple of 3, or a cube. Now we have the count the number of such
n. The multiples of 3 with 3 ≤ n ≤ 2023 are 36, 9, . . . , 2019, 2022,
these are b2023/3c = 674 numbers. The cubes with 3 ≤ n ≤ 2023
are 23, 33, . . . , 123 , because 123 = 1728 < 2023 and 133 = 2197 >
2023. These are 11 cubes, of which 4 are divisible by 3, hence
there are 7 cubes which are not a multiple of 3. Altogether, there
are 674 + 7 = 681 values of n satisfying the conditions.

Also solved by Shamil Abbasov. Azerbaijan, Baku.
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Advanced Problems

A–107. Proposed by Joseph Santmyer, US Federal Government
(retired), Las Crues, New Mexico, USA. Let us denote by A and B
the following integrals

A =
∫ 2π

0
cos(t) sin[ecos(t) cos(sin(t)− t)] cosh[ecos(t) sin(sin(t)− t)]dt,

B =
∫ 2π

0
sin(t) cos[ecos(t) cos(sin(t)− t)] sinh[ecos(t) sin(sin(t)− t)]dt.

Prove that

2π
∞∑

n=0

(−1)n(2n+ 1)2n

(2n+ 1)!(2n)!
= A−B.

(Correction of Problem A-103)

Solution 1 by Moti Levy, Rehovot, Israel. One may verify that

cos(t) sin
Ä
ecos t cos(sin(t)− t)

ä
cosh

Ä
ecos t sin(sin(t)− t)

ä
(1)

− sin(t) cos
Ä
ecos t cos(sin(t)− t)

ä
sinh

Ä
ecos t sin(sin(t)− t)

ä
= Re

(
eit sin

(
e−itee

it
))
.

It follows from (1) that

A−B = Re
∫ 2π

0
eit sin

(
e−itee

it
)
dt. (2)

The Taylor series of sin(x) is

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
,

hence

eit sin
(
e−itee

it
)

=
∞∑

n=0

(−1)neit
e−i(2n+1)te(2n+1)eit

(2n+ 1)!
.

Integrating term by term and changing the order of summation
and integration, we obtain,

A−B =
∞∑

n=0

(−1)n

(2n+ 1)!
Re

Ç∫ 2π

0
eite−i(2n+1)te(2n+1)eitdt

å



110 Arhimede Mathematical Journal

Let z = eit then

Re
∫ 2π

0
eite−i(2n+1)te(2n+1)eitdt = Re

(
−i

∮

Γ

e(2n+1)z

z2n+1
dz

)
,

where Γ is the unit circle {z : |z| = 1}.
Thus

A−B =
∞∑

n=0

(−1)n

(2n+ 1)!
Re

(
−i

∮

Γ

e(2n+1)z

z2n+1
dz

)
. (3)

The Taylor series of ex is
∑∞
m=0

xm

m!
, hence

e(2n+1)z =
∞∑

m=0

(2n+ 1)m

m!

zm

z2n+1

Again, integrating term by term and changing the order of summa-
tion and integration, we obtain,

Re

(
−i

∮

Γ

e(2n+1)z

z2n+1
dz

)
= Re

(
2n−1∑

m=0

(−i)
∮

Γ

(2n+ 1)m

m!

zm

z2n+1
dz

)

+ Re

Ñ
−i

∮

Γ

(2n+ 1)2n

(2n)!

1

z
dz

é
+ Re

Ñ
−i

∮

Γ

∞∑

m=2n+1

(2n+ 1)m

m!

zm

z2n+1
dz

é
By the Cauchy’s integral theorem

∮

Γ
zkdz =

®
2πi if z = −1

0 otherwise
, k ∈ Z.

Then

Re

(
−i

∮

Γ

e(2n+1)z

z2n+1
dz

)
= 2π

(2n+ 1)2n

(2n)!
. (4)

Plugging (4) into (3), we get the required result

A−B = 2π
∞∑

n=0

(−1)n
(2n+ 1)2n

(2n+ 1)!(2n)!
∼= 2.74804.
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Remark: A nice reference on this type of integrals is

[1] R. P. Boas, Jr. and Lowell Schoenfeld, "Indefinite Integration
by Residues", SIAM Review, Vol. 8., No. 2, April, 1966.

Solution 2 by Michel Bataille, Rouen, France. Let

C(t) = ecos(t) cos(sin(t)− t), S(t) = ecos(t) sin(sin(t)− t)

and Z(t) = C(t) + iS(t) so that C(t), S(t) ∈ R and Z(t) =
e(eit)e−it . Using cosh(S(t)) = cos(iS(t)), sinh(S(t)) = −i sin(iS(t)),
we readily obtain that

A =
1

2

∫ 2π

0
cos(t)[sin(Z(t)) + sin(Z(t))] dt,

B =
−i
2

∫ 2π

0
sin(t)[sin(Z(t))− sin(Z(t))] dt

and therefore

A−B =
1

2

∫ 2π

0

Ä
eit sin(Z(t)) + e−it sin(Z(t)))

ä
dt = <(I).

where I =
∫ 2π
0 eit sin(Z(t)) dt.

Now, we have

I =
1

i

∫ 2π

0
sin

Ñ
e(eit)

eit

é
d(eit) =

1

i

∫

γ
sin

Ç
ez

z

å
dz =

1

i
· 2πiσ = 2πσ

where γ is the unit circle described positively and σ is the residue
at 0 of the function z 7→ sin

Ä
ez

z

ä
.

Since

sin

Ç
ez

z

å
=
∞∑

n=0

(−1)n
e(2n+1)z

z2n+1(2n+ 1)!
and e(2n+1)z =

∞∑

k=0

(2n+ 1)kzk

k!
,

the coefficient σ of 1
z

in the Laurent expansion of sin
Ä
ez

z

ä
is

∑∞
n=0

(−1)n

(2n+1)!
· (2n+1)2n

(2n)!
, a real number. Thus

A−B = 2π
∞∑

n=0

(−1)n(2n+ 1)2n

(2n+ 1)!(2n)!
.

Also solved by the proposer.
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A–108. Proposed by Michel Bataille, Rouen, France. Evaluate

lim
n→∞

∞∑

k=1

1

k
Ä
n+k−1

n

ä .
Solution 1 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. Observe that

1Ä
n+k−1

n

ä =
n!(k − 1)!

(n+ k − 1)!
= n

(n− 1)!(k − 1)!

(n+ k − 1)!
= n

Γ(n)Γ(k)

Γ(n+ k)

= nB(n, k) = n
∫ 1

0
(1− x)n−1xk−1 dx,

where Γ(x) is the gamma function and B(x, y) is the beta function.
Thus,

∞∑

k=1

1

k
Ä
n+k−1

n

ä = n
∫ 1

0
(1− x)n−1

∞∑

k=1

xk−1

k
dx

= −n
∫ 1

0

(1− x)n−1 ln(1− x)

x
dx

= −n
∫ 1

0

xn−1 lnx

1− x
dx

= −n
∞∑

j=0

∫ 1

0
xn+j−1 lnx dx

= n
∞∑

j=0

1

(n+ j)2
= n

∞∑

j=n

1

j2
.

Finally, by the Stolz-Cesaro theorem,

lim
n→∞

∞∑

k=1

1

k
Ä
n+k−1

n

ä = lim
n→∞

n
∞∑

j=n

1

j2
= lim

n→∞

−1/n2

1/(n+ 1)− 1/n
= 1.

Solution 2 by G. C. Greubel, Newport News, VA, USA. The se-
ries can be evaluated in the following way.

Sn =
∞∑

k=1

1

k
Ä
n+k−1

n

ä =
∞∑

k=1

n! (k − 1)!

k (n+ k − 1)!

=
∞∑

k=0

n! k!

(k + 1) (n+ k)!
=
∞∑

k=0

n+ k + 1

k + 1
B(n+ 1, k + 1),
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where B(x, y) is the Beta function defined by

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
=
∫ 1

0
tx−1 (1− t)y−1 dt.

Now, by using the integral form of the Beta function, then

Sn =
∞∑

k=0

Ç
1 +

n

k + 1

å ∫ 1

0
tn (1− t)k dt

=
∫ 1

0

(
tn

1− (1− t)
+ n tn

∞∑

k=0

(1− t)k

k + 1

)
dt

=
∫ 1

0

Ç
tn−1 + n tn

ln(t)

t− 1

å
dt

=
∫ 1

0
tn−1 dt+ n

∫ 1

0

tn ln(t)

t− 1
dt

=
1

n
+ nψ

′
(n+ 1)

= nψ
′
(n),

where ψ′(x) is the trigamma function. The asymptotic expansion
of the trigamma function is

ψ
′
(x) ≈

1

x

Ç
1 +

1

2x
+

1

6x2
+O

Ç
1

x4

åå
and leads the series in question to the form

Sn ≈ 1 +
1

2n
+

1

6n2
+O

Ç
1

n4

å
and when the limit is taken yields the result

lim
n→∞

∞∑

k=1

1

k
Ä
n+k−1

n

ä = 1.

Solution 3 by Moti Levy, Rehovot, Israel. This problem is solved
here using hypergeometric function. A very good reference to the
application of hypergeometric functions to the evaluation of bino-
mial series is the wonderful book of Graham, Knut and Patashnik,
"Concrete Mathematics".
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The first step is to express the binomial series as a hypergeometric
function.

The second step is application of some classical hypergeometric
theorems and identities.

The following lemma explains how to express the binomial sum as
a hypergeometric function:

Lemma : Let (βk)k≥0 be a sequence which satisfies the following
conditions:

β0 = 1,

βk+1

βk
=

1

k + 1

(k + a)(k + b)(k + c)

(k + d)(k + e)
z.

Then
∞∑

k=0

βk = 3F 2

ñ
a b c
d e

∣∣∣∣∣z
ô
, (1)

where 3F 2

ñ
a b c
d e

∣∣∣∣∣z
ô

is a hypergeometric function.

Let
βk :=

1

(k + 1)
Ä
n+k

n

ä ,
then

βk+1

βk
=

1

k + 1

(k + 1)3

(k + n+ 1)(k + 2)
.

Hence by the lemma,

∞∑

k=1

1

k
Ä
n+k−1

n

ä = 3F 2

ñ
1 1 1
n+ 1 2

∣∣∣∣∣1
ô
.

Now we apply two known hypergeometric identities:

3F 2

ñ
a b c
d e

∣∣∣∣∣1
ô

=
Γ(d)Γ(e)Γ(s)

Γ(a)Γ(b+ s)Γ(c+ s)
3F 2

ñ
d− a e− a s

b+ s c+ s

∣∣∣∣∣1
ô
,

(2)

s := d+ e− a− b− c; Re(a) > 0, Re(s) > 0.



Volume 10, No. 1, Spring 2023 115

3F 2

ñ
a a 1
a+ 1 a+ 1

∣∣∣∣∣1
ô

= a2
∞∑

k=0

1

(a+ k)2 . (3)

Application of (2) gives

3F 2

ñ
1 1 1
n+ 1 2

∣∣∣∣∣1
ô

=
Γ(n+ 1)Γ(2)Γ(n)

Γ(1)Γ(n+ 1)Γ(n+ 1)
3F 2

ñ
n n 1

n+ 1 n+ 1

∣∣∣∣∣1
ô

=
1

n
3F 2

ñ
n n 1

n+ 1 n+ 1

∣∣∣∣∣1
ô
.

Application of (3) gives

3F 2

ñ
n n 1

n+ 1 n+ 1

∣∣∣∣∣1
ô

= n2
∞∑

k=0

1

(n+ k)2 .

Thus
∞∑

k=1

1

k
Ä
n+k−1

n

ä = n
∞∑

k=0

1

(n+ k)2 =
1

n

∞∑

k=0

1Ä
1 + k

n

ä2
Now

lim
n→∞

1

n

∞∑

k=0

1Ä
1 + k

n

ä2 =
∫ ∞

0

1

(1 + x)2 = 1.

Solution 4 by the proposer. First, it is readily checked that

∞∑

k=1

1

k
Ä
n+k−1

n

ä = n!
∞∑

k=1

1

k
·

1

k(k + 1) · · · (k + n− 1)
.

Then, we prove that for n ∈ N, the following equality holds:

∞∑

k=1

1

k
·

1

k(k + 1) · · · (k + n− 1)
=

Rn

(n− 1)!
(1)

where Rn =
∞∑
k=n

1
k2

.

We use induction on n. The result is obvious when n = 1. Assume
that (1) holds for some positive integer n. Then we calculate the
sum

Sn =
∞∑

k=1

1

k
·

1

k(k + 1) · · · (k + n)
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as follows

Sn =
∞∑

k=1

1

k
·

1

n

(
1

k(k + 1) · · · (k + n− 1)
−

1

(k + 1) · · · (k + n)

)

=
1

n
·

Rn

(n− 1)!
−

1

n
·

1

n · (n!)
=

1

n!

Ç
Rn −

1

n2

å
=
Rn+1

n!
.

(We have used the well-known telescopic series

∞∑

k=1

1

k(k + 1) · · · (k + n)

=
∞∑

k=1

1

n

(
1

k(k + 1) · · · (k + n− 1)
−

1

(k + 1) · · · (k + n)

)

=
1

n · (n!)
.

This completes the induction step and the proof.
From (1), we now deduce that

lim
n→∞

∞∑

k=1

1

k
Ä
n+k−1

n

ä = lim
n→∞

nRn.

But we have Rn = 1
n2 +

∞∑
k=n+1

1
k2

and we know that for α > 1,
∞∑

k=n+1

1
kα
∼ 1

(α−1)nα−1 as n → ∞. It follows that lim
n→∞

nRn = 1

and we conclude

lim
n→∞

∞∑

k=1

1

k
Ä
n+k−1

n

ä = 1.

A–109. Proposed by Florică Anastase, “Alexandru Odobescu”
high school, Lehliu-Gară, Călăraşi, Romania. Let {ωn}n≥1 be the

sequence defined by ωn = (2n+1)

Ç 2n∑

k=0

tan

Ç
x+

kπ

2n+ 1

åå−1

. Find

Ω = lim
n→∞

Ç
lim

x→ π
2n+1

Ç
cotx

cot π
2n+1

åωnå
.
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Solution 1 by Brian Bradie, Department of Mathematics, Christo-
pher Newport University, Newport News, VA. We start by es-
tablishing a closed form expression for ωn . Using the complex
exponential representation for the sine function,

2n∏

k=0

sin

Ç
x+

kπ

2n+ 1

å
=

2n∏

k=0

ei(x+ kπ
2n+1) − e−i(x+ kπ

2n+1)

2i

=
1

(2i)2n+1

2n∏

k=0

ei
kπ

2n+1
−ix

Å
e2ix − e−i

2kπ
2n+1

ã
=

1

(2i)2n+1
einπ−i(2n+1)x

2n∏

k=0

Å
e2ix − e−i

2kπ
2n+1

ã
.

Now, substitute z = e2ix into the equation

z2n+1 − 1 =
2n∏

k=0

Å
z − e−i

2kπ
2n+1

ã
to obtain

2n∏

k=0

Å
e2ix − e−i

2kπ
2n+1

ã
= e2i(2n+1)x − 1.

Thus,

2n∏

k=0

sin

Ç
x+

kπ

2n+ 1

å
=

1

(2i)2n+1
einπ

Ä
ei(2n+1)x − e−i(2n+1)x

ä
=

1

22n
sin(2n+ 1)x.

Taking the natural logarithm on both sides of this last expression,
differentiating and then replacing x by x+ π

2
yields

2n∑

k=0

tan

Ç
x+

kπ

2n+ 1

å
= (2n+1) tan((2n+ 1)x+ π) = (2n+1) tan(2n+1)x.

Thus,

ωn = (2n+ 1)

(
2n∑

k=0

tan

Ç
x+

kπ

2n+ 1

å)−1

= cot(2n+ 1)x.
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Next, let

y = lim
x→ π

2n+1

Ñ
cotx

cot π
2n+1

éωn

.

Then,

ln y = lim
x→ π

2n+1

ln
Å

cotx
cot π

2n+1

ã
tan(2n+ 1)x

= lim
x→ π

2n+1

− tanx csc2 x

(2n+ 1) sec2(2n+ 1)x

= −
1

2n+ 1
csc

π

2n+ 1
sec

π

2n+ 1
,

and

lim
x→ π

2n+1

Ñ
cotx

cot π
2n+1

éωn

= exp

Ç
−

1

2n+ 1
csc

π

2n+ 1
sec

π

2n+ 1

å
.

Finally, with

lim
n→∞

Ç
−

1

2n+ 1
csc

π

2n+ 1
sec

π

2n+ 1

å
= −

1

π
,

it follows that

Ω = lim
n→∞

Ñ
lim

x→ π
2n+1

Ñ
cotx

cot π
2n+1

éωné
= e−1/π.

Solution 2 by Moti Levy, Rehovot, Israel. We rephrase the prob-
lem as follows:

Let {νn}n≥1 be the sequence defined by

νn =
1

2n+ 1

2n∑

k=0

tan

ÇÇ
(k + 1)π

2n+ 1
+ ε

åå
Find

Ω = lim
n→∞

Ü
lim
ε→0

Ñ
tan

(
π

2n+1

)

tan
(

π
2n+1

+ ε
)

é 1
νn

ê
.
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Now we find asymptotic expansion of νn in terms of ε :

dνn

dε

∣∣∣∣∣
ε=0

=
1

2n+ 1

2n∑

k=0

Ç
1 + tan2

ÇÇ
(k + 1)π

2n+ 1

ååå
The following identity is well known (see outline of proof below):

2n∑

k=0

tan2

ÇÇ
(k + 1)π

2n+ 1

åå
= 2n(2n+ 1),

which implies

1

2n+ 1

2n∑

k=0

Ç
1 + tan2

ÇÇ
(k + 1)π

2n+ 1

ååå
= 2n+ 1.

Hence,
νn = (2n+ 1)ε+ O

Ä
ε2
ä
. (1)

Now we find asymptotic expansion of
tan( π

2n+1)
tan( π

2n+1
+ε)

in terms of ε :

tan
(

π
2n+1

)

tan
(

π
2n+1

+ ε
) =

tan
(

π
2n+1

)(
1− tan

(
π

2n+1

)
tan(ε)

)

tan
(

π
2n+1

)
+ tan(ε)

=

Ç
1− ε tan

Ç
π

2n+ 1

ååÑ
1−

ε

tan
(

π
2n+1

)

é
+ O

Ä
ε2
ä

= 1− ε
Ç

tan

Ç
π

2n+ 1

å
+ cot

Ç
π

2n+ 1

åå
+ O

Ä
ε2
ä

= 1−
2ε

sin
(

2π
2n+1

) + O
Ä
ε2
ä

(2)

lim
ε→0

Ñ
tan

(
π

2n+1

)

tan
(

π
2n+1

+ ε
)

é 1
νn

= lim
ε→0

Ñ
1−

2ε

sin
(

2π
2n+1

)
+ O(ε2)

é 1
(2n+1)ε+O(ε2)

= lim
ε→0

Ñ
1−

2ε

sin
(

2π
2n+1

)

é 1
(2n+1)ε

= exp

Ñ
−

2

(2n+ 1) sin
(

2π
2n+1

)

é
.



120 Arhimede Mathematical Journal

Ω = lim
n→∞

exp

Ñ
−

2

(2n+ 1) sin
(

2π
2n+1

)

é
= e−

1
π ∼= 0.727 38.

Finally, we give a proof of the identity (taken from StackExchange):
2n+1∑

k=1

tan2

Ç
kπ

2n+ 1

å
= 2

n∑

k=1

tan2

Ç
kπ

2n+ 1

å
.

By Euler’s formula,

(−1)k = cos(kπ) + i sin(kπ).

(−1)k =

Ç
cos

Ç
kπ

2n+ 1

å
+ i sin

Ç
kπ

2n+ 1
π

åå2n+1

The imaginary part of (−1)k is zero, hence

0 = Im

Ç
cos

Ç
kπ

2n+ 1

å
+ i sin

Ç
kπ

2n+ 1
π

åå2n+1

=
n∑

r=0

(
2n+ 1

2r + 1

)Ç
cos

Ç
kπ

2n+ 1

åå2n−2rÇ
i sin

Ç
kπ

2n+ 1
π

åå2r+1

.

Dividing by
(
cos

(
kπ

2n+1

))2n+1
,

n∑

r=0

(
2n+ 1

2r + 1

)Ç
i tan

Ç
kπ

2n+ 1

åå2r+1

= 0.

Dividing by tan
(

kπ
2n+1

)
,

n∑

r=0

(
2n+ 1

2r + 1

)Ç
− tan2

Ç
kπ

2n+ 1

åår
= 0.

Setting x = tan2
(

kπ
2n+1

)
, the left hand side is a polynomial of degree

n in x,

Pn(x) :=
n∑

r=0

(
2n+ 1

2r + 1

)
(−x)r,

whose n roots are
(
tan2

(
kπ

2n+1

))
1≤k≤n

.

By Vieta’s formulas, the sum of the n roots is equal to minus the
coefficient of xn−1 divided by the coefficient of xn ,

n∑

k=1

tan2

Ç
kπ

2n+ 1

å
=
−(−1)n−1

Ä
2n+1

2(n−1)+1

ä
(−1)n

= n(2n+ 1).
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Solution 3 by Michel Bataille, Rouen, France. Recall that if
a ∈ [0, π

2
), then tan(a + h)− tan(a) ∼ (1 + tan2(a))h as h→ 0

(this directly follows from tan′(a) = 1 + tan2(a)).
Let h = x− π

2n+1
. Then h→ 0 as x→ π

2n+1
and the sum

T =
2n∑

k=0

tan

Ç
x+

kπ

2n+ 1

å
=

2n∑

k=0

tan

Ç
h+

kπ

2n+ 1

å
satisfies T =

∑2n
k=0

(
1 + tan2 kπ

2n+1

)
h + o(h). Since

2n∑
k=0

tan2 kπ
2n+1

=

2n(2n+ 1) (see proof at the end), we obtain T = (2n+ 1)2h+ o(h)
and ωn ∼ 1

(2n+1)h
as h→ 0.

Now, consider

ln

Ñ
cotx

cot π
2n+1

é
= ln

(
tan π

2n+1

tanx

)
= ln

(
1−

(
1−

tan π
2n+1

tanx

))
.

We have

1−
tan π

2n+1

tanx
=

tan
(
h+ π

2n+1

)
− tan π

2n+1

tan
(
h+ π

2n+1

) ∼
1 + tan2 π

2n+1

tan π
2n+1

· h

hence

ln

Ñ
cotx

cot π
2n+1

é
∼ −

1 + tan2 π
2n+1

tan π
2n+1

· h

as h→ 0. Thus,

lim
x→ π

2n+1

ωn ln

Ñ
cotx

cot π
2n+1

é
= −

1 + tan2 π
2n+1

tan π
2n+1

·
1

2n+ 1
.

As n → ∞, the latter tends to − 1
π

(since tan π
2n+1

∼ π
2n+1

) and

we readily deduce that Ω = e−
1
π .

Proof of
2n∑
k=0

tan2 kπ
2n+1

= 2n(2n+ 1).

Consider the polynomial A(x) = (1 + x)2n+1 − (1− x)2n+1 . Using
the binomial theorem, we easily obtain A(x) = 2xP (x2) where the
polynomial P is defined by

P (x) =
n∑

k=0

(
2n+ 1

2k + 1

)
xk.
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Now, the roots of A(x) are the complex numbers xk such that
1+xk
1−xk

= exp
(

2kπi
2n+1

)
(k = 0, 1, . . . , 2n). A simple calculation gives

xk = i tan kπ
2n+1

and (since tan (n+j)π

2n+1
= − tan (n+1−j)π

2n+1
for j =

1, . . . , n) it readily follows that

A(x) = 2x
n∏

k=1

Ç
x− i tan

kπ

2n+ 1

åÇ
x+ i tan

kπ

2n+ 1

å
and

P (x) =
n∏

k=1

Ç
x+ tan2

kπ

2n+ 1

å
.

We deduce that
n∑

k=1

Ç
− tan2

kπ

2n+ 1

å
= −

(
2n+ 1

2n− 1

)
= −n(2n+ 1)

and the result follows.

Also solved by the proposer.

A–110. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. The plane is partitioned into n regions by three
families of parallel lines in general position. What is the least
number of lines to ensure that n ≥ 2023?

Solution 1 by Moti Levy, Rehovot, Israel. Generally, a collec-
tion of n lines in the plane are said to be in general position if no
two are parallel and no three are concurrent. So in this problem,
we assume that there are no three lines which intersect at a com-
mon point. We can divide the lines into three subsets of lines. The
lines in each subsets are parallel.

Let µ1, µ2, µ3 be the number of lines in each subset.

n = µ1 + µ2 + µ3. (1)

Now we prove by mathematical induction that the number of
regions is

Rn(µ1, µ2, µ3) = 1 +

(
n+ 1

2

)
−
(
µ1

2

)
−
(
µ2

2

)
−
(
µ3

2

)
. (2)
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Suppose (2) is true. We add (without loss of generality) one line
to the first subset, that is the number of lines of the first subset
becomes µ1 + 1 and the total number of lines becomes n+ 1.

One can observe that the additional line intersects the lines of the
second and third subsets, thus creating additional 1 + µ2 + µ3

regions.

Therefore,

Rn+1(µ1 + 1, µ2, µ3) = Rn + 1 + µ2 + µ3

= 1 +

(
n+ 1

2

)
−
(
µ1

2

)
−
(
µ2

2

)
−
(
µ3

2

)
+ 1 + µ2 + µ3

= 1 +

(
n+ 1

2

)
−
(
µ1

2

)
−
(
µ2

2

)
−
(
µ3

2

)
+ 1 + n− µ1

= 1 +

(
n+ 2

2

)
−
(
µ1 + 1

2

)
−
(
µ2

2

)
−
(
µ3

2

)
.

One can check that

R76(26, 25, 25) = 1 +

(
76 + 1

2

)
−
(

26

2

)
−
(

25

2

)
−
(

25

2

)
= 2002,

R77(26, 26, 25) = 1 +

(
77 + 1

2

)
−
(

26

2

)
−
(

26

2

)
−
(

25

2

)
= 2054.

We conclude that the least number of lines to ensure the number
of regions exceeds 2023 is 77.

Solution 2 by the proposer. Suppose that there are x, y and
z lines in the three families. Assume that no point is common
to three distinct lines. The x + y lines of the first two families
partition the plane into (x+ 1)(y + 1) regions. Let α be one of the
lines of the third family. It is cut into x+ y + 1 parts by the lines
in the first two families, so the number of regions is increased by
x+ y + 1. Since this happens z times, the number of regions that
the plane is partitioned into by the three families of lines is

n = (x+1)(y+1)+z(x+y+1) = (x+y+z)+(xy+yz+zx)+1.
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Let u = x+ y + z and v = xy + yz + zx. Then v ≤ x2 + y2 + z2 ,
as can be easily proven, so that u2 = x2 + y2 + z2 + 2v ≥ 3v .
Therefore,

n ≤ u+
u2

3
+ 1.

This is a value less than 2003 when u = 76. However, when
(x, y, z) = (26, 26, 25), then u = 77, v = 1976 and n = 2044.
Therefore, we need at least 77 lines, so a conveniently chosen set
of 77 lines will suffice.

A–111. Proposed by Félix Moreno Peñarrubia, Charles University,
Prague, Czech Republic. Consider the function f : Z+ × Z+ → Z+

defined as:

• f(n, 1) = n for all positive integers n.
• For m ≥ 2, f(n,m) is the smallest multiple of m which is

greater than or equal to f(n,m− 1).

We call a positive integer n special if all elements of the infinite
sequence {f(n, 1), f(n, 2), . . .} are distinct. Prove that there are
at least 2022 special integers less than 5 000 000.

Solution 1 by Ander Lamaison Vidarte, Brno, Czech Republic.
We claim that for all positive integers k, there is a special number
such that f(n, k) = k2 , and so f(n,m) = km for all m ≥ k. To
prove this, we consider the sequence with am = km for all m ≥ k
and with am being the greatest multiple of m− 1 strictly smaller
than f(n,m) for 2 ≤ m ≤ k. We can show that, for n = a1 ,
this sequence satisfies the recurrence in the statement (f(n,m) is
divisible by m and 1 ≤ f(n,m)− f(n,m− 1) ≤ m− 1), so n is
a special number. Note that the generated numbers are different,
since they create different sequences, and that the number n
generated from k is less than or equal to f(n, k) = k2 . Therefore,
for k = 1, 2, . . . , 2022, all generated special numbers are less than
20222 < 5 000 000.

Solution 2 by the proposer. We will prove the following two
claims:
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1. For each special number n, there exists exactly one m such
that f(n,m) = m2 .

2. For each positive integer m, there exists exactly one special
number n so that f(n,m) = m2 .

(Note: in fact, it is true that the m-th special number satisfies
f(n,m) = m2 , and this can be used to compute the m-th special
number efficiently). It is clear that these two facts taken together
imply what we want to prove, since therefore there are 2022 distinct
special numbers less than or equal to 12, 22, . . . , 20222 respectively,
and 20222 < 5 000 000.

Let’s prove the first claim. Consider the integer-valued function
g(n,m) = f(n,m)

m
. We have the following facts:

1. g(n,m) is decreasing in m.
Proof: (m+ 1)g(n,m) is a multiple of m+ 1 which is greater
than f(n,m) and therefore f(n,m+1) ≤ (m+1)g(n,m) =⇒
g(n,m+ 1) ≤ g(n,m).

2. If g(n,m) > m and g(n,m + 1) < m + 1, then f(n,m) =
f(n,m+ 1).
Proof: f(n,m + 1) = (m + 1)g(n,m + 1) ≤ (m + 1)m ≤
g(n,m)m = f(n,m), and f(n,m + 1) ≥ f(n,m) by defini-
tion.

3. If g(n,m) ≤ m, then g(n,m+ 1) = g(n,m).
Proof: Note that (m+ 1)(g(n,m)− 1) = f(n,m) + g(n,m)−
m− 1 < f(n,m), so f(n,m+ 1) = (m+ 1)g(n,m).

By the first and second facts, if n is a special number there must
exist a m0 such that f(n,m0) = m2

0 . By the third fact, this m0

has to be unique since for m > m0 , we have f(n,m) = m ·m0 .
So the first claim is proven.

Let’s prove the second claim. For each m, define the function
hm(x) as:

• For x ≥ m, hm(x) = x ·m.
• For 1 ≤ x < m, hm(x) = hm(x + 1) − x if hm(x + 1) is a

multiple of x, hm(x) = hm(x+1)−Res(hm(x+1), x) otherwise,
where Res(a, b) is the residue of dividing a by b.
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Note that hm(x) must be a positive integer for all positive integers
x (even if we subtracted x at each x from m− 1 to 1, it wouldn’t
reach 0), and hm(x+ 1) is the smallest multiple of x+ 1 greater
than or equal to hm(x), and that hm(x + 1) > hm(x) for all x.
Therefore, we must have hm(x) = f(hm(1), x), and hm(1) is the
special number we are looking for. To see that this special number
is unique, note that if we impose f(n,m) = mk for any given m, k
and we require n to be a special number, then the m values that
f(n,m), f(n,m− 1), . . . , f(n, 1) should have (if a solution exists)
are uniquely determined by a recursive formula like the one for the
function hm(x). So the second claim is proven and we are done.

A–112. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Let a, b be positive real numbers. Prove that

∫ 1

0
ta(1− t)b−1 ln(t) dt ≥

aΓ(a)Γ(b)

(a+ b)Γ(a+ b)
ln

Ç
a

a+ b

å
,

where Γ(x) is the Euler Gamma Function.

Solution 1 by G. C. Greubel, Newport News, VA, USA. Starting
with the Beta function,

∫ 1

0
tx−1 (1− t)y−1 dt =

Γ(x) Γ(y)

Γ(x+ y)

and taking a derivative with respect to x leads to

∫ 1

0
tx−1 (1− t)y−1 ln(t) dt = B(x, y) (ψ(x)− ψ(x+ y)).

Now using a form of expansion for the digamma function, namely,

ψ(x+ 1) = ln(x) +
1

2x
−
∞∑

j=1

B2j

(2j)x2j
,

where Bn are the Bernoulli numbers, shows that

ψ(x+ 1) ≥ ln(x)
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and
∫ 1

0
tx−1 (1− t)y−1 ln(t) dt ≥ B(x, y) ln

Ç
x− 1

x+ y − 1

å
.

Setting x = a+ 1 and y = b yields
∫ 1

0
ta (1− t)b−1 ln(t) dt ≥ B(a+ 1, b) ln

Ç
a

a+ b

å
.

This is valid for a, b > 0.

Additional Notes Similarly, if a derivative with respect to y is
taken then

∫ 1

0
tx−1 (1− t)y−1 ln(1− t) dt = B(x, y) (ψ(y)− ψ(x+ y))

≥ B(x, y) ln

Ç
y − 1

x+ y − 1

å
.

Setting x = a+ 1 and y = b+ 1 then
∫ 1

0
ta (1− t)b ln(1− t) dt ≥ B(a+ 1, b+ 1) ln

Ç
b

a+ b+ 1

å
which is valid for b > 0.

If a second derivative is applied, with respect to x, then

I2 =
∫ 1

0
tx−1 (1− t)y−1 ln2(t) dt

= B(x, y)
Ä
ψ
′
(x)− ψ′(x+ y) + (ψ(x)− ψ(x+ y))2

ä
.

Using ψ′(x) ≥
1

x
then

I2 ≥ B(x, y)

(
y

x (x+ y)
+ ln2

Ç
x

x+ y

å)
.

Setting x = a+ 1 and y = b+ 1 leads to
∫ 1

0
ta (1− t)b ln2(t) dt

≥ B(a+ 1, b+ 1)

(
b+ 1

(a+ 1) (a+ b+ 2)
+ ln2

Ç
a+ 1

a+ b+ 2

å)
.
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Solution 2 by Moti Levy, Rehovot, Israel.

I(a, b) :=
∫ 1

0
ta(1− t)b−1 ln(t)dt

The Beta function B(x, y) is defined as

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
.

I(a, b) =
∫ 1

0

∂ta

∂a
(1− t)b−1dt =

∂

∂a

∫ 1

0
ta(1− t)b−1dt

=
∂

∂a
B(b, a+ 1) =

∂

∂a

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)

=
a

a+ b

Γ(a)Γ(b)

Γ(a+ b)
(ψ(a+ 1)− ψ(a+ b+ 1)), (1)

where ψ(x) is the Digamma function defined as

ψ(x) :=
d

dx
ln(Γ(x)) =

Γ
′
(x)

Γ(x)
.

It follows from (1), that the original inequality is proved once we
show that ψ(a+ 1)− ψ(a+ b+ 1) ≥ ln

(
a
a+b

)
, or that

ψ(a+ 1)− ln(a) ≥ ψ(a+ b+ 1)− ln(a+ b). (2)

To this end,we show that the function ψ(x+ 1)−ln(x) is monotone
decreasing for x > 0.

d(ψ(x+ 1)− ln(x))

dx
= ψ

′
(x+ 1)−

1

x
. (3)

Now we use a well known inequality (see "Polygamma function"
entry in Wikipedia)

ψ
′
(y) ≤

1

y
+

1

y2
(4)

to show that

ψ
′
(x+ 1) ≤

1

x+ 1
+

1

(x+ 1)2 =
x+ 2

(x+ 1)2 ≤
1

x
, for x > 0. (5)

It follows from (5) that d(ψ(x+1)−ln(x))

dx
≤ 0 for all x > 0, hence the

function ψ(x+ 1)− ln(x) is monotone decreasing for x > 0.
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Solution 3 by Michel Bataille, Rouen, France. Let B(x, y) de-
note the Beta Function, defined by B(x, y) =

∫ 1
0 t

x−1(1− t)y−1 dt
for x, y > 0.
We know that for x, y > 0, B(x, y) = Γ(x)Γ(y)

Γ(x+y)
and Γ(x+1) = xΓ(x).

It follows that
∫ 1

0
ta(1−t)b−1 dt = B(a+1, b) =

Γ(a+ 1)Γ(b)

Γ(a+ 1 + b)
=

aΓ(a)Γ(b)

(a+ b)Γ(a+ b)
.

In consequence, the requested inequality will be obtained if we
prove that

∫ 1

0
ta(1− t)b−1

ñ
ln(t)− ln

Ç
a

a+ b

åô
dt ≥ 0. (1)

From the classical inequality ln(x) ≤ x − 1, we deduce that for
t > 0 we have

ln

Ç
a

a+ b

å
− ln(t) = ln

( a
a+b

t

)
≤

a
a+b

t
− 1

so that t
(
ln(t)− ln

(
a
a+b

))
≥ t− a

a+b
.

We first deduce that

ta(1−t)b−1

ñ
ln(t)− ln

Ç
a

a+ b

åô
≥ ta(1−t)b−1−

a

a+ b
· ta−1(1−t)b−1

and then, if I denotes the integral on the left of (1),

I ≥ B(a+ 1, b)−
a

a+ b
·B(a, b) = 0,

as desired.

Solution 4 by the proposer. To proof the statement we will need
to apply Jensen’s inequality for integrals. Namely, if f : [a, b]→ R
is a convex function and h : [a, b] → R∗+ and u : [a, b] → R+ are
continuous functions, then

f

Ñ∫ b
a h(x)u(x) dx
∫ b
a h(x) dx

é
≤
∫ b
a h(x)f(u(x)) dx

∫ b
a h(x) dx
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Let X be a Beta random variable which probability density function
is

hX(t) =
1

B(a, b)
ta−1(1− t)b−1I{0 < t < 1}

=
Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1I{0 < t < 1}

with expectation given by E(X) =
a

a+ b
.

Putting u(t) = t and f(t) = t ln(t) (that is convex in (0, 1)) into
Jensen’s inequality, we haveÇ

a

a+ b

å
ln

Ç
a

a+ b

å
≤

1

B(a, b)

∫ 1

0
ta−1(1− t)b−1t ln(t) dt

=
Γ(a)Γ(b)

Γ(a+ b)

∫ 1

0
ta−1(1− t)b−1t ln(t) dt

from which the statement follows.
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