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Inequalities and Limits

José Luis Díaz-Barrero

Abstract

In this paper, we use inequalities and identities to obtain some
results involving Riemann sums and integrals that are applied
to compute limits.

1 Introduction

The following limit was published by Díaz-Barrero [3]:

lim
n→+∞

n∑
k=1

arctan

(
k

n2

)
.

In order to compute it, a technique involving Riemann sums like
the ones appeared in [2, 4] may be utilized. In this paper, we
use some inequalities involving real functions to derive results
about Riemann sums that let us calculate limits of some numerical
sequences by means of integrals [1]. Moreover, some limits are
also computed applying this technique.

2 Main results

Hereafter, several results involving continuous functions that will
be used to compute limits of sequences of real numbers are stated
and proven. We begin with the following.
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Theorem 1. Let f : [0, 1] → (0,+∞) be a bounded integrable
function. Then,

lim
n→∞

n∑
k=1

ln

[
1 +

1

n
f

(
k

n

)]
=

∫ 1

0

f(x) dx.

Proof. Since f is bounded, there exists M ≥ 0 such that |f(x)| ≤
M for all x ∈ [0, 1]. Now we will use the well-known inequality for
the function f(t) = ln(t+ 1),

x−
x2

2
≤ ln(1 + x) ≤ x,

valid for all x ∈ [0, 1]. We put x =
1

n
f

(
k

n

)
, 1 ≤ k ≤ n, into the

inequality (notice that, since f is bounded, x ∈ [0, 1] for all k for
n large enough). Adding the resulting inequalities yields

n∑
k=1

1

n
f

(
k

n

)
−

n∑
k=1

1

2n2
f2

(
k

n

)
≤

n∑
k=1

ln

[
1 +

1

n
f

(
k

n

)]
≤

n∑
k=1

1

n
f

(
k

n

)
.

Taking limits when n→∞, we get∫ 1

0

f(x) dx− lim
n→∞

n∑
k=1

1

2n2
f2

(
k

n

)
≤ lim

n→∞

n∑
k=1

ln

[
1 +

1

n
f

(
k

n

)]
≤
∫ 1

0

f(x) dx.

Since 0 ≤
n∑
k=1

1

2n2
f2

(
k

n

)
≤
M2

2n
, then when n → ∞ we obtain

that

0 ≤ lim
n→∞

n∑
k=1

1

2n2
f2

(
k

n

)
≤ lim

n→∞

M2

2n
= 0

and

lim
n→∞

n∑
k=1

ln

[
1 +

1

n
f

(
k

n

)]
=

∫ 1

0

f(x) dx,

and this completes the proof.



90 Arhimede Mathematical Journal

Corollary 1. Let f : [0, 1] → (0,+∞) be a bounded integrable
function. Then,

lim
n→∞

n∏
k=1

[
1 +

1

n
f

(
k

n

)]
= e

∫ 1
0 f(x) dx.

Proof. Since the function ln(t) is continuous in (0,+∞), then we
have

lim
n→∞

n∑
k=1

ln

[
1 +

1

n
f

(
k

n

)]
= lim

n→∞
ln

n∏
k=1

[
1 +

1

n
f

(
k

n

)]
=

∫ 1

0

f(x) dx

or

ln

(
lim
n→∞

n∏
k=1

[
1 +

1

n
f

(
k

n

)])
=

∫ 1

0

f(x) dx,

from which the statement follows.

Next we present some applications of the above result similar to
the ones appeared in [5].

Problem 1. Compute

lim
n→∞

n∑
k=1

ln

[
1 +

1

n

(
n2 − k2

n2 + k2

)]
.

Solution. Applying Theorem 1 to f(x) =
1− x2

1 + x2
we have

lim
n→∞

n∑
k=1

ln

[
1 +

1

n

(
n2 − k2

n2 + k2

)]
=

∫ 1

0

1− x2

1 + x2
dx

= 2 arctan(x)− x
∣∣∣1
0

=
π − 2

2
.
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Problem 2. Compute

lim
n→∞

n∏
k=1

[
1 +

1

n

(
n− k
n+ k

)]
.

Solution. We have

lim
n→∞

n∏
k=1

[
1 +

1

n

(
k − n
k + n

)]
= lim

n→∞

n∏
k=1

[
1 +

1

n

(
1− k/n
1 + k/n

)]
.

Putting f(x) =
1− x
1 + x

in Corollary 1 and taking into account that

∫ 1

0

1− x
1 + x

dx = 2 ln(1 + x)− x
∣∣∣1
0

= ln(4)− 1,

we obtain

lim
n→∞

n∏
k=1

[
1 +

1

n

(
n− k
n+ k

)]
= e−1+ln(4) =

4

e
.

Another result involving limits and integrals is the following.

Theorem 2. Let f : [0, 1] → (0,+∞) be a bounded integrable
function. Then,

lim
n→∞

1

n

n∑
k=1

f
(
k
n

)
1 + 2

√
1
n
f
(
k
n

)
+ 1

=
1

3

∫ 1

0

f(x) dx.

Proof. Putting x =
1

n
f

(
k

n

)
in the following inequality

x−
1

3
x2 ≤

3x

1 + 2
√
x+ 1

≤ x, for all x ∈ [0, 1]
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(we can do this because f is bounded, so x ∈ [0, 1] for f large
enough), we obtain

n∑
k=1

1

n
f

(
k

n

)
−

n∑
k=1

1

3n2
f2

(
k

n

)
≤

n∑
k=1

3

n
f

(
k

n

)
1 + 2

√
1

n
f

(
k

n

)
+ 1

≤
n∑
k=1

1

n
f

(
k

n

)
.

Taking limits when n→∞, we get

∫ 1

0

f(x) dx− lim
n→∞

n∑
k=1

1

3n2
f2

(
k

n

)
≤ lim

n→∞

n∑
k=1

3

n
f

(
k

n

)
1 + 2

√
1

n
f

(
k

n

)
+ 1

≤
∫ 1

0

f(x) dx.

Since f is bounded, there exists M ≥ 0 such that |f(x)| ≤ M

for all x ∈ [0, 1] and 0 ≤
n∑
k=1

1

3n2
f2

(
k

n

)
≤
M2

3n
. Therefore, when

n→∞, we have that

0 ≤ lim
n→∞

n∑
k=1

1

3n2
f2

(
k

n

)
≤ lim

n→∞

M2

3n
= 0

and

lim
n→∞

n∑
k=1

3

n
f

(
k

n

)
1 + 2

√
1

n
f

(
k

n

)
+ 1

=

∫ 1

0

f(x) dx,

from which the statement follows.

Next we apply the preceding result in the following problem.
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Problem 3. Compute the limit

lim
n→∞

1

n

n∑
k=1

k + n

n+ 2
√
n2 + n+ k

.

Solution. We have

lim
n→∞

1

n

n∑
k=1

k + n

n+ 2
√
n2 + n+ k

= lim
n→∞

1

n2

n∑
k=1

k + n

1 + 2
√

n2+n+k
n2

= lim
n→∞

1

n

n∑
k=1

k
n

+ 1

1 + 2
√

1
n

(
k
n

+ 1
)

+ 1
.

Now putting f(x) = x+ 1 in Theorem 2, we get

lim
n→∞

1

n

n∑
k=1

k + n

n+ 2
√
n2 + n+ k

=
1

3

∫ 1

0

(x+ 1) dx =
1

2
.

Theorem 3. Let f : [0, 1] → (0,+∞) be a bounded integrable
function. Then,

lim
n→∞

n∑
k=1

[
e−

1
n
f( kn) sin

(
1

n
f

(
k

n

))]
=

∫ 1

0

f(x) dx.

Proof. Putting x =
1

n
f

(
k

n

)
(1 ≤ k ≤ n) in the inequality

x− x2 ≤ e−x sinx ≤ x, valid for x ∈ [0, 1]

(we can do this because f is bounded, so x ∈ [0, 1] for f large
enough), and adding up the resulting inequalities we get

n∑
k=1

1

n
f

(
k

n

)
−

n∑
k=1

1

n2
f2

(
k

n

)
≤

n∑
k=1

e−f(
k
n) sin

(
k

n

)
≤

n∑
k=1

1

n
f

(
k

n

)
.
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Taking limits when n→∞, we get∫ 1

0

f(x) dx− lim
n→∞

n∑
k=1

1

n2
f2

(
k

n

)
≤ lim

n→∞

n∑
k=1

e−f(
k
n) sin

(
k

n

)
≤
∫ 1

0

f(x) dx.

Since f is bounded, there exists M ≥ 0 such that |f(x)| ≤M for

all x ∈ [0, 1] and 0 ≤
n∑
k=1

1

n2
f2

(
k

n

)
≤
M2

n
. Thus, when n→∞,

0 ≤ lim
n→∞

n∑
k=1

1

n2
f2

(
k

n

)
≤ lim

n→∞

M2

n
= 0

and

lim
n→∞

n∑
k=1

[
e−

1
n
f( kn) sin

(
1

n
f

(
k

n

))]
=

∫ 1

0

f(x) dx,

as claimed.

Problem 4. Compute the following limit:

lim
n→∞

n∑
k=1

[
e−k

2/n3

sin

(
k2

n3

)]
.

Solution. Putting f(x) = x2 in Theorem 3, we have

lim
n→∞

n∑
k=1

[
e−k

2/n3

sin

(
k2

n3

)]
=

∫ 1

0

x2 dx =
1

3
.

Finally, another result for computing limits using an identity and
integrals is the following.

Theorem 4. Let f : [0, 1]→ R be a continuous function. Then,

lim
n→∞

1

n2

∑
1≤i<j≤n

f

(
i

n

)
f

(
j

n

)
=

1

2

(∫ 1

0

f(x) dx

)2

.
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Proof. From the identity(
n∑
k=1

xk

)2

=
n∑
k=1

x2
k + 2

∑
1≤i<j≤n

xixj,

we get

1

n2

(
n∑
k=1

f

(
k

n

))2

=
1

n2

n∑
k=1

f2

(
k

n

)
+

2

n2

∑
1≤i<j≤n

f

(
i

n

)
f

(
j

n

)
.

Since

lim
n→∞

1

n

(
1

n

n∑
k=1

f2

(
k

n

))
= 0,

then

lim
n→∞

1

n2

∑
1≤i<j≤n

f

(
i

n

)
f

(
j

n

)
=

1

2

[
lim
n→∞

1

n

n∑
k=1

f

(
k

n

)]2

=
1

2

(∫ 1

0

f(x) dx

)2

,

and the proof is complete.

As an application, we compute the following limit.

Problem 5. Determine

lim
n→∞

1

n2

∑
1≤i<j≤n

(
n4 − (i2 + j2)n2 + i2j2

n4 + (i2 + j2)n2 + i2j2

)2

.

Solution. Applying Theorem 4 to f(x) =

(
1− x2

1 + x2

)2

we have

lim
n→∞

1

n2

∑
1≤i<j≤n

(
n4 − (i2 + j2)n2 + i2j2

n4 + (i2 + j2)n2 + i2j2

)2

= lim
n→∞

1

n2

∑
1≤i<j≤n

(
(n2 − i2)(n2 − j2)
(n2 + i2)(n2 + j2)

)2
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=
1

2

(∫ 1

0

(
1− x2

1 + x2

)2

dx

)2

=
1

2

(
x− 2 arctan(x) +

2x

x2 + 1

∣∣∣1
0

)2

=
(4− π)2

32
.

References

[1] Apostol, T. M. Mathematical analysis. Second. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1974,
pp. xvii+492.

[2] Díaz-Barrero, J. L. “Problem A-23”. Arhimede math. j. 2.2
(2015), p. 103.

[3] Díaz-Barrero, J. L. “Problem A-46”. Arhimede math. j. 4.1
(2017), p. 23.

[4] Díaz-Barrero, J. L. and Gibergans Báguena, J. “On Limits
Computed by Integrals”. Foaie Matematica 7.1 (2005), pp. 1–6.

[5] Kaczor, W. J. and Nowak, M. T. Problems in mathematical
analysis. III. Integration. Vol. 21. Student Mathematical Li-
brary. American Mathematical Society, Providence, RI, 2003,
pp. x+356. ISBN: 0-8218-3298-0. URL: https://doi.org/10.
1090/stml/021.

José Luis Díaz-Barrero
School of Civil Engineering, ECA
Technical University of Catalonia (BarcelonaTech)
Jordi Girona 1-3, C2, 08034 Barcelona. Spain
jose.luis.diaz@upc.edu

https://doi.org/10.1090/stml/021
https://doi.org/10.1090/stml/021


Volume 4, No. 2, Autumn 2017 97

Problems
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical problems. Proposals
are always welcome. Please observe the following guidelines when
submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on
separate sheets, each indicating the name and address of the
sender. Drawings must be suitable for reproduction.

2. Proposals should be accompanied by solutions. An asterisk (*)
indicates that neither the proposer nor the editor has supplied
a solution.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu

The section is divided into four subsections: Elementary Problems,
Easy–Medium High School Problems, Medium–Hard High School
Problems, and Advanced Problems mainly for undergraduates.
Proposals that appeared in Math Contests around the world and
most appropriate for Math Olympiads training are always welcome.
The source of these proposals will appear when the solutions are
published.

Solutions to the problems stated in this issue should be posted
before

May 31, 2018
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Elementary Problems

E–47. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Show that among 2018 distinct positive integers
there are two of them whose sum is at least 4035.

E–48. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Without the aid of a computer, show that

cot 36◦ · cot 72◦ =

√
5

5
.

E–49. Proposed by José Gibergans Báguena, BarcelonaTech, Bar-
celona, Spain. Solve in R the following system of equations:

x = 5y
√

1 + z2,
y = 5z

√
1 + x2,

z = 5x
√

1 + y2.


E–50. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Let ha , hb , hc be the altitudes of triangle ABC . Let
P be a point inside 4ABC . Find the maximum value of

da · db · dc
ha · hb · hc

,

where da , db , dc are the distances from P to the sides BC , CA
and AB , respectively.

E–51. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Without the aid of a computer, show that the coeffi-
cient an of the monomial an xn in the expression∑

n≥0

an x
n =

2x

1− 12x+ 35x2
, for x ∈

(
−

1

7
,
1

7

)
,

is a nonnegative integer and determine its value.
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E–52. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Let O be the center of the circumcircle γ of triangle
ABC . If it lies outside of 4ABC and ∠ABC = 36◦ , then find the
value of the angles of triangle AOC .
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Easy–Medium Problems

EM–47. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. [Correction] Let A1, A2, . . . , An be the vertices of
an n-gon inscribed in a circle of center O . If O and the Ai ’s are
lattice points, then prove that the sum of the squares of the sides
of the n-gon is an even number.

EM–48. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let ABC be an acute triangle with orthocenter H and incenter I .
If A′ is the midpoint of side BC , A′′ is the midpoint of AH , M is
the midpoint of AI and A′′M ⊥ A′M , then calculate ]BAC .

EM–49. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Inside a square of side 1 there are several circum-
ferences. If the sum of their perimeters is 100, prove that there is
a line perpendicular to one side of the square intersecting 32 of
them.

EM–50. Proposed by Nicolae Papacu, Slobozia, Romania. Find
all real solutions of the system of equations

[x] [y] = x+ y,
[x] + [y] = [x y],

}
where [a] represents the integer part of the real number a.

EM–51. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. In the convex quadrilateral ABCD , choose points
A, B , C and D in the interior of the sides AB , BC , CD and
DA, respectively, such that

AA′

A′B
=
BB′

B′C
=
CC′

C′D
=
DD′

D′A
= r.

Compute
[A′B′C′D′]

[ABCD]
and express it as function of r . Here, the

expression [XY ZT ] represents the area of quadrilateral XY ZT .
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EM–52. Proposed by Ander Lamaison Vidarte, Berlin Mathemati-
cal School, Berlin, Germany. Let ABC be an acute triangle with
orthocenter H and circumcenter O . BO and CO intersect AH at
P and Q, respectively. Prove that the areas of BCH , BCP and
BCQ add up to the area of ABC .
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Medium–Hard Problems

MH–47. Proposed by Ismael Morales López, Universidad Com-
plutense de Madrid, Madrid, Spain. There are 2018 students on a
mathematics competition. We say the pair of students (A,B) is
friendly if A knows B . This relation is naturally supposed to be
symmetric. Find the greatest integer n such that at least one of
the following conditions always holds:

i) There exists a student that knows at least other n students.
ii) There exists a set of 2n students that does not contain any

friendly pair.

MH–48. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Let n be a positive integer. Prove that(

1

n

n∑
k=1

1

22kC(n, k)

)n
> e(n+1)−5n.

Here, C(n, k) represents the binomial coefficient
(
n

k

)
.

MH–49. Proposed by Nicolae Papacu, Slobozia, Romania. Let
x1,x2, . . . ,xn be n ≥ 2 positive numbers other than one such that
x2
1 + x2

2 + . . .+ x2
n = n3 . Prove that

log4
x1
x2

x1 + x2

+
log4

x2
x3

x2 + x3

+ . . .+
log4

xn
x1

xn + x1

≥
1

2
.

MH–50. Proposed by Óscar Rivero Salgado, BarcelonaTech, Bar-
celona, Spain. Let a be an integer and p ≥ 3 be a prime number.
Prove that

ap + (a+ 1)p + . . .+ (a+ p− 1)p

is a multiple of p2 .
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MH–51. Proposed by Ismael Morales López, Universidad Com-
plutense de Madrid, Madrid, Spain. Find all strictly increasing
sequences {an}n≥1 of positive integers such that:

i) a2018n − an ≤ 2017n.
ii) If ak is the sum of two squares then k is, too.

MH–52. Proposed by Ángel Plaza and Sergio Falcón, Universidad
Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
The Fibonacci numbers are defined recursively by Fn = Fn−1+Fn−2

with initial values F0 = 0, F1 = 1. Prove that

bn−1
2
c∑

i=0

(
n

2i+ 1

)2

52i ≥
22n−2F 2

n

1 + bn−1
2
c
,

where b·c denotes the integer part.



104 Arhimede Mathematical Journal

Advanced Problems

A–47. Proposed by Mihaela Berindeanu, Bucharest, Romania.
Let A and B be 2 × 2 matrices with integer entries such that
AB = BA, det(A+B) = 2, and det(A3 +B3) = 23 . Compute
det(A2 +B2).

A–48. Proposed by José Luis Díaz-Barrero, Barcelonatech, Bar-
celona, Spain. Without using the series expansion of the hyper-
bolic functions, show that the function f : R → R defined by
f(x) = sinh2 x is not a polynomial.

A–49. Proposed by Nicolae Papacu, Slobozia, Romania. Let A,
B ∈M2(Q) be matrices such that

det(A2 − pI2) = det(B2 − qI2) = det((AB)2 − pqI2) = 0,

where p, q are prime numbers.

a) If p 6= q , then prove that AB = BA.
b) If p = q , then prove that (AB)2 + (BA)2 = 2p2I2 .

A–50. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Compute∫ ∞

1

2

[t]3 + 6[t2] + 11[t] + 6
dt,

where [x] represents the integer part of x.

A–51. Proposed by Mihály Bencze, Braşov, Romania. Let a, b be
complex numbers which satisfy that |ak + bk| ≤ 2 for any positive
integer n and for all k ∈ {3,5,7, . . . ,2n + 1}. If |ab| ≤ 1, then
prove that |a+ b| ≤ 2.

A–52. Proposed by Mihály Bencze, Braşov, Romania. Find the
general term of the sequence {an}n≥1 if a1 = 1

2
and for all n ≥ 1,

we have that (n3 + 3n2 + 2n) an+1 = an + n4 + 4n3 + 5n2 + n.
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Mathlessons
This section of the Journal offers readers an opportunity to ex-
change interesting and elegant mathematical notes and lessons
with material useful to solve mathematical problems.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Conjecture and Proof

José Luis Díaz-Barrero and Alberto Espuny Díaz

1 Introduction

When working with mathematical statements a natural question
arises: how do we prove a claim in mathematics? That is, how do
we establish the correctness of a mathematical statement? This
question was first answered by various Greek scholars well over
two thousand years ago. Interestingly, their basic idea of what a
mathematical proof should be has been accepted, with relatively
minor modifications, right up until this day. This is in contrast
to the situation in other sciences, where even in the last three
hundred years there have been tremendous changes, advances,
and controversy about what constitutes a proof. In part, this is
because the range of methods allowed in mathematical proofs is
quite a bit more specific and narrow than in other fields. As is the
case of a hypothesis in other sciences, a conjecture is a statement
that has not been proved yet, although there is usually evidence
for believing it.

When solving a problem, a usual technique consists in the follow-
ing: first, we begin by analyzing particular cases and obtaining
data that allows us to observe a pattern and to make a conjecture
about its solution. After the conjecture is made, the next step is to
prove it by choosing an appropriate technique of proof and obtain
a full solution. The goal of this lesson is to solve some problems
using this procedure.
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2 Problems

Hereafter, some more or less well-known examples where the solu-
tion is conjectured are discussed and completely solved.

Problem 1 (The Tower of Hanoi). There are n circular disks of
decreasing radii, each with a hole at the center, and three pegs A,
B , and C fixed vertically on a table so that the distance between
the feet of any two of them is greater than the diameter of the largest
disk. Initially these disks are slipped onto peg A with the largest
disk at the bottom and the others on top of this, in decreasing order
of size. A legal move is defined as the transfer of the top disk from
one of the three pegs to the top of the stack on one of the other two
pegs where it rests on a larger disk. Determine the number of legal
moves needed to transfer all n disks from peg A to another peg.

Solution. Let f(n) be the number of legal moves. Clearly, f(1) = 1.
Furthermore, if n = 2, then, in order to transfer the second ring
to the second peg, we must first transfer the first ring from the
first peg to the auxiliary peg (the third peg); then we place the
second ring on the second peg and transfer the first (smallest)
ring to the second peg. Thus, f(2) = 2 f(1) + 1 = 3. If n = 3,
then to transfer the lowest (largest) ring to the second peg, in the
necessary arrangement, we must first move the top two rings to the
third peg (using the second peg as auxiliary). This requires f(2)
moves, and f(2) moves will be required again to place the rings
on the second peg after the largest ring is moved from the first
peg to the second peg (now using the first peg as auxiliary). Thus,
f(3) = 2 f(2) + 1 = 7. Now we make the following conjecture:

Conjecture. f(n) = 2 f(n− 1) + 1 = 2n − 1, for n ≥ 2.

We now prove the conjecture. The base cases for the recurrence
are given by the examples above. In general, assume that we want
to prove the recurrence for any value of n ≥ 2. If we ignore the
bottom ring, we can move all the other n− 1 rings to the second
peg in f(n− 1) moves. Then, we move the bottom ring to the third
peg, and move all others to the third peg in f(n− 1) moves again,
which shows that f(n) ≤ 2 f(n − 1) + 1. To show that equality
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Figure 1: The Tower of Hanoi.

must hold, it suffices to observe that moving the smallest n − 1
disks to another peg before moving the largest disk is unavoidable,
as this is the only position in which the largest disk can be moved.
The same must be done after the largest disk has been moved.
Therefore, at least 2 f(n− 1) + 1 steps are required. This proves
the recurrence holds for all n ≥ 2.

Now let us solve the recurrence by mathematical induction. Sup-
pose that f(n − 1) = 2n−1 − 1 then f(n) = 2 f(n − 1) + 1 =
2 (2n−1 − 1) + 1 = 2n − 1. Thus, by the principle of finite mathe-
matical induction, it follows that f(n) = 2n − 1 for all n.

We may also obtain the explicit value of f(n) as follows. Sub-
tracting f(n − 1) = 2 f(n − 2) + 1 from f(n) = 2 f(n − 1) + 1
yields

f(n) = 3f(n− 1)− 2f(n− 2).

To solve the preceding homogeneous recursion we try with f(n) =
tn . Then, we have tn = 3 tn−1 − 2 tn−2 , or tn−2 (t2 − 3t + 2) = 0.
Since t = 0 is not a solution, then we have t = 1 and t = 2
and their linear combinations as candidates. That is, the general
solution is

f(n) = A · 2n +B · 1n = A · 2n +B.

On account that f(1) = 1 and f(2) = 3 we get A = 1 and B = −1.
Thus, f(n) = 2n − 1, and we are done.
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Problem 2. Suppose that there are n lines in the plane, no two
parallel and no three intersecting at a point. Into how many regions
is the plane divided by these lines? What is the maximum number
of regions into which the space R3 can be divided by n planes?

Solution. In order to make a conjecture, first we generate some
data. Let f(n) be the number of regions into which the plane is
divided by n lines in general position. With some simple sketches
we see that f(1) = 2, f(2) = 4, f(3) = 7 and f(4) = 11. What
can we say about the progression of numbers 2,4,7,11, . . .? The
successive differences of these numbers are 2,3,4, . . . Thus, it
seems that f(n)− f(n− 1) = n, or, equivalently, f(n) = f(n−
1) + n, for n ≥ 2. Now we make the following conjecture:

Conjecture. f(n) = f(n− 1) + n, for n ≥ 2.

11
10

9
8 7

6

5

43

2
1

7
6

5

43

2

1

43

2 1 21

Figure 2: One, two, three, and four lines dividing the plane into
two, four, seven, and eleven regions, respectively.

In order to prove the conjectured expression, consider the following.
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Assume that the plane is divided into f(n−1) regions by n−1 lines
and we draw a new line (with the conditions from the statement).
This line intersectes each of the previous n − 1 lines, and as
each point of intersection is always between two regions (never
more, as no three lines intersect in a point) it must cross n of the
f(n− 1) regions. The new line divides each of these regions into
two, meaning that the n regions become 2n or, equivalently, that
there are n more regions than before.

The expression f(n) − f(n − 1) = n is a recurrence relation for
f(n). To obtain the value of f(n) = f(n− 1) + n explicitly we will
argue by working backwards:

f(n) = f(n− 1) + n = f(n− 2) + (n− 1) + n

= f(n− 3) + (n− 2) + (n− 1) + n

= . . .

= f(1) + (2 + 3 + 4 + . . .+ n)

= 2 +
n(n+ 1)

2
− 1 =

n2 + n+ 2

2
.

Now we face the space problem. The number of spacial regions
will be largest when no four planes intersect in a single point, and
when the intersection of any three planes are non-parallel lines. We
will assume that these two conditions are satisfied in the following
argument, and denote the maximum number of spacial regions by
g(n).

Thus, we suppose that R3 is divided by n planes into g(n) regions.
We now add an additional plane. By the conditions of the last
paragraph, this plane is cut by the original n planes in n lines, no
three of which are concurrent, and no two of which are parallel
(that is, they are in general position). The new (n+ 1)-th plane is
therefore divided by the n lines into f(n) plane regions. Each one
of these f(n) regions divides each spacial region it traverses into
two, so that the addition of the (n+ 1)-th plane increases g(n) by
f(n). This proves the following conjecture.

Conjecture. g(n+ 1) = g(n) + f(n), for n ≥ 0.
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That is,

g(1) = g(0) + f(0),
g(2) = g(1) + f(1),
g(3) = g(2) + f(2),

...
g(n) = g(n− 1) + f(n− 1).

Now we can solve this recurrence to compute the number of regions.
Adding up the preceding expressions and taking into account that

f(n) =
n2 + n+ 2

2
yields

g(n) = 2 + f(1) + f(2) + . . .+ f(n− 1)

= 2 +

n−1∑
k=1

(
1 +

k(k + 1)

2

)
=
n3 + 5n+ 6

2
,

which is the maximum number of regions into which the space R3

can be divided by n planes.

Problem 3. Into how many regions do n circles divide the plane,
if each two circles intersect in two points, and no three of the circles
pass through the same point? What is the maximum number of
regions into which the space R3 can be divided by n spheres?

Solution. As in the previous problems, we begin by obtaining some
first values. We denote the maximum number of regions into which
the plane is divided by n circles in general position by f(n). Thus,
we suppose that the plane is divided by n circles into f(n) regions.
We study the cases when there are 1, 2, 3 and 4 circles in the
plain; we observe that the plane is divided into 2, 4, 8 and 14
regions, respectively (see Figure 3). That is, f(1) = 2, f(2) = 4,
f(3) = 8 and f(4) = 14. By observing the progression so far,
we observe that the successive differences of these numbers are
2,4,6, . . . Thus, it seems that f(n) − f(n − 1) = 2(n − 1), or,
equivalently, f(n) = f(n− 1) + 2(n− 1), for n ≥ 2. Now we make
the following conjecture:
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Conjecture. f(n+ 1) = f(n) + 2n, for n ≥ 1.

Figure 3: One, two, three, and four circles dividing the plane into
two, four, eight, and fourteen regions, respectively.

In order to show that this holds for all values of n, suppose n
circles are given in the plane. They will divide the plane into a
maximum number of pieces if every two of them intersect (that is,
if no two of them are tangent and none of them lies entirely within
or outside of another) and no three of them are concurrent. Such
sets of circles always exist. In fact it is possible to draw infinitely
many circles in the plane in such a way that any two of them
intersect in two points, but no three of them are concurrent. For
example, construct two intersecting circles of the same radius r
with centers A and B . Then draw all circles of radius r whose
centers are on the line segment AB . This family clearly has the
desired properties.

Suppose now that the plane is divided by n circles into f(n) re-
gions. We add an additional circle. This (n+ 1)-th circle intersects
each of the first n circles in two points. These 2n points divide the
(n + 1)-th circle into 2n arcs. Each of these arcs divides in two
one of the regions formed by the first n circles. That is, there are
n more regions than there were before. This concludes the proof.
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To compute the number of regions, we have that

f(1) = 2,
f(2) = f(1) + 2 · 1,
f(3) = f(2) + 2 · 2,
f(4) = f(3) + 2 · 3,

...
f(n) = f(n− 1) + 2 · (n− 1).

Adding up the preceding expressions yields

f(n) = 2 + 2 · 1 + 2 · 2 + 2 · 3 + . . .+ 2 · (n− 1) = n2 − n+ 2,

which is the maximum number of regions into which the plane can
be divided by n circles.

We now consider the problem of spheres in R3 . For brevity, we will
not state the hypotheses we must impose in order to insure a max-
imum number of pieces but will tacitly assume them throughout.
We denote the maximum number of spacial regions into which n
spheres divide the space by g(n). Suppose that n spheres have
been drawn. Let us see by how much the (n + 1)-th sphere in-
creases the number of pieces. The (n+ 1)-th sphere meets each of
the first n spheres in a circle. The circles of intersection will all be
different, no two of them will be tangent, and —viewed as curves
on the (n+ 1)-th sphere— none of them will lie inside or outside
another.

Previously we proved that, under these conditions, n circles in
a plane will divide the plane into n2 − n + 2 pieces. The same
argument can be used to prove the corresponding theorem for
circles on a sphere. Therefore the surface of the (n+ 1)-th sphere
is divided into n2−n+2 regions by the circles at which it intersects
the first n spheres. Each of these regions splits into two one of the
pieces into which the first n spheres had divided space. The (n+1)-
th sphere thus increases the number of pieces by f(n) = n2−n+2.
That is,

g(1) = g(0) + f(0),
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g(2) = g(1) + f(1),
g(3) = g(2) + f(2),

...
g(n) = g(n− 1) + f(n− 1),

and consequently the total number of pieces is

g(n) = 2 + f(1) + f(2) + . . .+ f(n− 1)

= 2 + (12 − 1 + 2) + (22 − 2 + 2) + . . .

+ ((n− 1)2 − (n− 1) + 2)

= 2 + (12 + 22 + . . .+ (n− 1)2 − (1 + 2 + . . .+ (n− 1))

+ (2 + 2 + . . .+ 2)︸ ︷︷ ︸
n−1

=
n(n2 − 3n+ 8)

3
.

Problem 4. Let n ≥ 2 be a positive integer and S = {1, 2, . . . , n}.
For every k ∈ {1, 2, . . . , n− 1}, prove that

xk =
1

n+ 1

∑
A⊂S
|A|=k

(minA+ maxA)

is an integer number and determine its value.

Solution. Observing the sequence

1, 2, . . . , i− 1︸ ︷︷ ︸
i−1

, i, i+ 1, i+ 2, . . . , n︸ ︷︷ ︸
n−i

we may conjecture that, for each i ∈ {1, 2, . . . , n}, the number
of subsets each with k elements and having i as its minimum

element is
(
n− i
k − 1

)
. Likewise, there are

(
i− 1

k − 1

)
subsets each

with k elements and having i as its maximum element. Indeed,
from

1, 2, . . . , i− 1︸ ︷︷ ︸
i−1

, i, i+ 1, i+ 2, . . . , n︸ ︷︷ ︸
n−i
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we have that any one of the
(
n− i
k − 1

)
subsets of numbers greater

than i together with {i} forms a subset of k elements of S whose

minimum element is i. Likewise, any one of the
(
i− 1

k − 1

)
subsets

of numbers smaller than i together with {i} becomes a subset of
k elements of S whose maximum element is i. Thus,

xk =
1

n+ 1

∑
A⊂S
|A|=k

(minA+ maxA)

=
1

n+ 1

[(
n− 1

k − 1

)
+ 2

(
n− 2

k − 1

)
+ . . .+ (n− k + 1)

(
k − 1

k − 1

)
+ n

(
n− 1

k − 1

)
+ (n− 1)

(
n− 2

k − 1

)
+ . . .+ k

(
k − 1

k − 1

)]
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
k − 1

k − 1

)
.

Finally, for each value of k we prove by induction on n ≥ k that

P (n) :

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
k − 1

k − 1

)
=

(
n

k

)
.

For n = k, P (k) trivially holds. Now we assume that P (n) holds
and we have to prove that P (n+ 1) also holds. Indeed,(

n

k − 1

)
+

(
n− 1

k − 1

)
+ . . .+

(
k − 1

k − 1

)
=

(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
,

and we are done.

We close this section with the following problem.

Problem 5. Let n be a positive integer. Compute

n∑
k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
.

Solution. For every function f for which f(k) 6= 0 (1 ≤ k ≤ n) we
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have

n∏
k=1

(
1 +

1

f(k)

)

=1 +
n∑
k=1

1

f(k)
+

∑
1≤i1<i2≤n

1

f(i1)f(i2)
+ . . .+

1

f(1)f(2) · · · f(n)

=1 +
n∑
k=1

∑
1≤i1<...<ik≤n

1

f(i1)f(i2) · · · f(ik)
.

Putting f(x) =
x+ 1

2
into the preceding expression, we get

1 +
n∑
k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
=

n∏
k=1

(
1 +

2

k + 1

)
.

Let us denote P (n) =
n∏
k=1

(
1 +

2

k + 1

)
and we get some particular

values. For n = 1, we have

P (1) = 2 =
(1 + 2) (1 + 3)

6
;

for n = 2, we obtain

P (2) =
10

3
=

(2 + 2) (2 + 3)

6
,

and for n = 3, we obtain

P (3) = 5 =
(3 + 2) (3 + 3)

6
.

The above suggest to conjecture that

P (n) =
n∏
k=1

(
1 +

2

k + 1

)
=

(n+ 2)(n+ 3)

6
.
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To prove this, we argue by induction. The base case when has
already been proved. Assume that the identity holds for n. We
have to prove that

n+1∏
k=1

(
1 +

2

k + 1

)
=

(n+ 3)(n+ 4)

6
.

Indeed,
n+1∏
k=1

(
1 +

2

k + 1

)
=

n∏
k=1

(
1 +

2

k + 1

)(
1 +

2

n+ 2

)
=

(
(n+ 2)(n+ 3)

6

)(
1 +

2

n+ 2

)
=

(n+ 3)(n+ 4)

6
.

Therefore,
n∑
k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
=

(n+ 2)(n+ 3)

6
− 1

=
n(n+ 5)

6
,

and we are done.
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Contests
In this section, the Journal offers sets of problems appeared in
different mathematical contests over the world, as well as their
solutions. This gives readers an opportunity to find interesting
problems and develop their own solutions.

No problem is permanently closed. We will be very pleased to
consider new solutions to problems posted in this section for pub-
lication. Please, send submittals to José Luis Díaz-Barrero, En-
ginyeria Civil i Ambiental, UPC BARCELONATECH, Jordi Girona
1-3, C2, 08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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XXXII Iberoamerican
Mathematical Olympiad

Óscar Rivero Salgado

1 Introduction

The XXXII edition of the Iberoamerican Mathematical Olympiad
(Olimpiada Iberoamericana de Matemáticas, OIM) was held be-
tween the 15th and the 23rd of September 2017 in Puerto Iguazú
(Argentina). As is customary in this type of events, one of the main
goals is to promote the study of sciences in general and, in partic-
ular, mathematics. Another goal is to support scientific talent and
initiative among different countries’ youth. However, the olympic
experience goes further: throughout the contest, participants had
a chance to share experiences and deepen the friendship among
themselves and the countries they represent.

More information about this competition can be found in the web
http://www.oma.org.ar/ibero2017/

The Spanish team for this competition was formed by Alberto
Acosta Reche (Toledo), Rafah Hajjar Muñoz (Valencia), Aitor Iribar
López (León) and Jordi Rodríguez Manso (Barcelona). The deputy
leader was Óscar Rivero Salgado, and the leader, José Luis Díaz
Barrero.

http://www.oma.org.ar/ibero2017/
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2 Problems and Solutions

In the following, we present the statements given to the contestants
in the competition with some solutions of Spaniard participants,
slightly modified by the deputy leader.

Problem 1. For every positive integer n, let S(n) be the sum
of its digits. We say that n has property P if all the terms in the
infinite sequence n, S(n), S(S(n)), . . . are even numbers; we say
that n has property I if all the terms of the sequence are odd.
Show that in the interval [1, 2017] there are more n with property
I than with property P .

Solution by Rafah Hajjar, CFIS, BarcelonaTech, Barcelona, Spain.
First of all, we will prove that

S(2k + 1) = S(2k) + 1,

for any positive integer k. To see this, observe that the last digit of
2k belongs to {0, 2, 4, 6, 8}, and hence the only digit of 2k+ 1 that
differs from 2k is the last one, that is exactly one unit greater, as
desired.

From this result, we deduce that if n has property P , then n+ 1
has property I . This holds because

S(n+ 1) = S(n) + 1, S(S(n+ 1)) = S(S(n) + 1) = S(S(n)) + 1,

from which it follows that Sk(n + 1) = Sk(n) + 1 since Sk(n) is
always even.

Hence, for each n with property P we can construct n′ := n + 1
with property I , and this mapping is injective. Moreover, 1 has
property I and is not in the image of the mapping, so

|I| ≥ |P |+ 1 and consequently |I| > |P |.
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Problem 2. Let ABC be an acute triangle and let Γ be its
circumcircle. Let D be a point on segment BC , different from B
and C , and let M be the midpoint of AD . The line perpendicular
to AB through D intersects AB in E and Γ in F , with point D
between E and F . Lines FC and EM intersect at point X . If
∠DAE = ∠AFE , show that line AX is tangent to Γ.

Solution 1 by Rafah Hajjar, CFIS, BarcelonaTech, Barcelona,
Spain. Let F ′ be the second intersection of DE with Γ (F 6= F ′ ).
Observe that F ′B is parallel to AD , since

∠ABF ′ = ∠AFF ′ = ∠AFE = ∠BAD,

where the first equality holds because AFBF ′ is cyclic, and the
last one, because of the statement of the problem.

XMF'

F

E

D
C

B

A

Figure 1: Scheme for Problem Problem 2.

Let K = AF ′ ∩ BC . Observe that the previous fact gives the
equality

AM

MD
·
DB

BK
·
KF ′

F ′A
= 1,

and hence applying Ceva’s theorem to triangle AKD , we see that
lines AB , F ′D and KM meet at point E (and consequently K ,
E and M lie in the same line).

We now apply Pascal’s theorem to AAF ′FCB , and defining X ′ =
AA ∩ CF (where AA is the tangent line to Γ through A), we see



122 Arhimede Mathematical Journal

that K , E and X ′ are collinear, so they are in the same line as M .
Therefore, X ′ = EM ∩CF = X , and since X ′ is in the tangent to
Γ through A, so is X , and we conclude that XA is tangent to Γ,
as desired.

Solution 2 by Alberto Acosta, Universidad Complutense de
Madrid, Madrid, Spain. Since ∠DAE = ∠AFE and ∠AED =
∠AEF , triangles ADE and FAE are similar. This implies that

EA2 = ED · EF ,

and in particular EA is tangent to the circumcircle of triangle
ADF .

On the other hand, ∠DEA = 90◦ and M is the midpoint of AD ,
so M is the center of the circumcircle of DEA. It turns out that
∠MEA = ∠EAM and, consequently,

∠EAF = 90◦ − ∠DAE = 90◦ − ∠MAE = 90◦ − ∠AEM .

Hence, EM is perpendicular to AF .

Using the previous results,

∠CXE = ∠FXE = 90◦ − ∠AFX = 90◦ − ∠AFC

= 90◦ − ∠ABC = 90◦ − ∠EBD = ∠BDE.

Consequently,
∠CDE + ∠EXC = 180◦

and E , D , C , X lie on the same circle. In particular, by power of
a point,

FC · FX = FD · FE.

Since AF is perpendicular to EX ,

XA2 = EA2 +XF 2 − EF 2 = ED · EF − EF 2 +XF 2

= −EF · FD +XF 2 = −XF · FC +XF 2

= −XF · CF +XF 2 = XF (XF − CF ) = XC ·XF .

Using power of a point from X to the circumcircle of ABC , we
have that XA is tangent to Γ in A.
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Remark. In the solution written by the contestant in the exam (So-
lution 2), he used oriented angles and lengths; here, for ease of
notation, we have directly written his solution in the language of
metric geometry.

Problem 3. Consider the configurations of integer numbers

a1,1

a2,1 a2,2

a3,1 a3,2 a3,3

· · · · · · · · ·
a2017,1 a2017,2 a2017,3 · · · a2017,2017

with ai,j = ai+1,j + ai+1,j+1 for all i, j such that 1 ≤ j ≤ i ≤ 2016.
Determine the maximum amount of odd integers that one such
configuration can contain.

Solution by Rafah Hajjar, CFIS, BarcelonaTech, Barcelona, Spain.
We will work modulo two and consider that all the entries are either
0 or 1. Consider the configuration in which

aij =

{
0 if i+ j ≡ 1 mod 3,
1 elsewhere.

This configuration satisfies the requirement of the statement and
the total number of ones is

1 + 2(3 + 6 + . . .+ 2016) = 1 + 2016 ·
(

2016

3
+ 1

)
= 1356769.

We will prove that this bound cannot be improved. For that, con-
sider the six numbers

ai,j, ai+1,j, ai+1,j+1, ai+2,j, ai+2,j+1, ai+2,j+2,

for 1 ≤ j ≤ i ≤ 2015. A trivial check shows that one must have
at least two zeros between these six numbers. In particular, if ai,j ,
ai+1,j and ai+2,j are one, then both ai+1,j+1 and ai+2,j+1 should
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be zero. With this observation in mind, let cn be the number of
zeros in row n. We will prove by induction that

cn+1 + cn + cn−1 ≥ n,

and from here we will get that the given bound cannot be improved
(since base cases are trivial).

Suppose that the result holds for a board with n− 2 rows and we
will prove it for a board with n+ 1 rows. For 1 ≤ i ≤ n+ 1, let di
be the number of zeros in column i and rows n− 1, n or n + 1.
Fix a certain 1 ≤ i ≤ n − 1; if di = 0, this means that di+1 ≥ 2.
Furthermore, if dn = 0, then dn+1 = 1. From here, we deduce that

cn−1 + cn + cn+1 = d1 + d2 + . . .+ dn + dn+1 ≥ n,

as claimed.

Problem 4. Let ABC be an acute triangle with AC > AB
and O its circumcenter. Let D be a point on segment BC such
that O is in the interior of triangle ADC and ∠DAO + ∠ADB =
∠ADC . Let P , Q be the circumcenters of triangles ABD and
ACD , respectively, and M the intersection point of lines BP and
CQ. Show that lines AM , PQ and BC are concurrent.

Solution by Alberto Acosta, Universidad Complutense de Ma-
drid, Madrid, Spain. We will proceed through three steps: first
we show that M is in the circumcircle of ABC ; then, we show that
BPQC is cyclic; and we finish by showing that PAMQ. Then, by
concurrency of radical axis, we will be done.

1. Proof that M is in the circumcircle of ABC .

∠MBC = ∠PBD = 90◦ − ∠BPD/2 = 90◦ − ∠BAD;
∠BCM = ∠DCQ = 90◦ − ∠DQC/2 = 90◦ − ∠DAC.

Hence,

∠CMB = 180◦ − ∠MBC − ∠BCM

= ∠BAD + ∠DAC = ∠BAC.
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M

Q
P

O

D CB

A

Figure 2: Scheme for Problem Problem 4.

2. Proof that BPQC is cyclic. Let T = BP ∩AD . Since AD is
the radical axis of the circumcircles of both BDA and ADC ,
we see that AD is perpendicular to PQ. Then,

∠BPQ = 180◦ − ∠TPQ

= 180◦ − (180◦ − 90◦ − ∠DTB)

= 90◦ + ∠DTB

= 90◦ + (180◦ − ∠PBD − ∠BDA)

= 270◦ − (90◦ − ∠BAD)− ∠BDA

= 180◦ + ∠BAD − ∠BDA

= 180◦ + ∠BAD + ∠DAO − ∠ADC

= 180◦ + ∠BAO − ∠ADC

= 180◦ + 90◦ − ∠ACD − ∠ADC

= 90◦ + ∠DAC.

On the other hand, by the properties of the central angle,

∠BCQ = 90◦ − ∠DQC/2 = 90◦ − ∠DAC,

and, consequently,

∠BPQ+ ∠BCQ = 180◦.
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3. Proof that PAMQ is cyclic.

∠AMP = ∠AMB = ∠ACB;

∠AQP = 90− ∠DAQ = ∠AQD/2 = ∠ACD = ∠ACB.

Since ∠AMP = ∠AQP , we are done.

Problem 5. Given a positive integer n, we write all its divisors
in the blackboard. Ana and Beto play the following game: in turns,
each one colors the divisors of n of either red or blue. They can
choose the color they prefer in each turn, but they can only color
numbers that have not been colored before. The game finishes
when all the numbers have been colored. If the product of all
numbers painted in red is a perfect square, Ana wins. In any other
case, Beto wins. If Ana begins playing, determine, for each n, who
has the winning strategy.

Solution by Alberto Acosta, Universidad Complutense de Ma-
drid, Madrid, Spain, and Rafah Hajjar, CFIS, BarcelonaTech,
Barcelona, Spain. If n = k2 , in the first turn Ana colors k in
blue. Then, if in a given turn Beto colors number d of a certain
color, Ana uses the same color for n/d. Since the number of divi-
sors of a perfect square is odd and

√
n has already been chosen,

Ana can follow this strategy. In each pair of turns, either we do
not add red numbers or we add a pair of number whose product is
a perfect square. Hence, once the game is finished, the product is
a perfect square and Ana wins.

Assume now that n is not a perfect square. If n is a prime number,
then Ana clearly wins just by painting n in blue. Elsewhere, since
n is not a perfect square, there is a prime divisor that appears with
odd exponent; if it appears with odd exponent in k divisors and
Ana colors the penultimate of these, then Beto can win by choosing
the color in such a way that in the product of all red numbers
the parity of the exponent of p is odd. Then, since n has an even
number of divisors, Beto will finish the game, and since n is not a
prime number there exists at least a prime p with odd exponent
appearing at least twice, in such a way that Beto can force Ana to
color the penultimate of these divisors, winning the game.
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Problem 6. Let n > 2 be an even positive integer and a1 <
a2 < . . . < an real numbers such that ak+1 − ak ≤ 1 for all
k with 1 ≤ k ≤ n − 1. Let A be the set of pairs (i, j) with
1 ≤ i < j ≤ n and j − i even, and let B be the set of pairs (i, j)
with 1 ≤ i < j ≤ n and j − i odd. Show that∏

(i,j)∈A

(aj − ai) >
∏

(i,j)∈B

(aj − ai).

Solution by Jordi Rodríguez, CFIS, BarcelonaTech, Barcelona,
Spain. We will proceed by induction. We first prove the result for
n = 4. In particular, we show that

(a4 − a2)(a3 − a1) > (a4 − a1)(a3 − a2)

≥ (a4 − a1)(a3 − a2)(a4 − a3)(a2 − a1).

The last inequality is obvious by the constraints in the numbers.
The first one is equivalent to

−a4a1 − a2a3 + a1a3 + a2a4 = (a4 − a3)(a2 − a1) > 0,

which is clearly true.

Assume now that the statement is true for 2n and show it for
2n+ 2; if we are able to show that

n∏
i=1

((a2n+2 − a2i)(a2n+1 − a2i−1))

≥
n∏
i=1

((a2n+2 − a2i−1)(a2n+1 − a2i))

we will be done by using the induction hypothesis.

However, it would be enough to show independently that, after
renaming a = a2n+2 , b = a2n+1 , c = a2i and d = a2i−1 ,

(a− c)(b− d) ≥ (a− d)(b− c),

or what is the same

−ad− cb+ bd+ ac = (a− b)(c− d) ≥ 0,

and this follows directly because a ≥ b and c ≥ d.
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Solutions
No problem is ever permanently closed. We will be very pleased to
consider new solutions or comments on past problems for publica-
tion.

Please, send submittals to José Luis Díaz-Barrero, Enginyeria
Civil i Ambiental, UPC BARCELONATECH, Jordi Girona 1-3, C2,
08034 Barcelona, Spain, or by e-mail to

jose.luis.diaz@upc.edu
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Elementary Problems

E–41. Proposed by Alberto Espuny Díaz, University of Birming-
ham, Birmingham, United Kingdom. Prove that the square of the
perimeter of a rectangle is at least 16 times its area.

Solution 1 by Laura Cánovas i Hidalgo, Universitat de Barce-
lona, Barcelona, Spain. Let the sides of the rectangle be a and
b, the perimeter 2a+ 2b and the area a · b. Then,

(2a+ 2b)2 ≥ 16ab

⇐⇒ 4a2 + 8ab+ 4b2 ≥ 16ab

⇐⇒ 4a2 − 8ab+ 4b2 ≥ 0

⇐⇒ (2a− 2b)2 ≥ 0.

The last inequality holds because the squares are never negative.

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
Purchase, NY, USA. Denoting the length, width, perimeter, and
area of a rectangle by l, w, P , and A, respectively, we apply the
AM-GM inequality to see that

P 2 = 4(l + w)2 ≥ 4
(
2
√
lw
)2

= 16 lw = 16A.

Equality holds if and only if the rectangle is in fact a square.

Solution 3 by Jose Pérez Cano, IES Alfonso XI, Alcalá la Real,
Jaén, Spain. Geometrically, if we take a rectangle and put four of
them like in one side of the picture we get the perimeter. Hence,
the side of the square of Figure 1 is the perimeter of the rectangle.

Computing the total area, we have sixteen rectangles minus the
four shading squares of the corners plus the big square in the
center and four other squares. As we see, the total is 16 original
rectangles plus some 4 other squares of area (b− a)2 . Therefore,
the equality is given if, and only if, the original rectangle is a
square.
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Figure 1: Sketch for Solution 3 of Problem E–41.

Solution 4 by the proposer. Let us prove that the inequality
holds for any rectangle of area A. Let one of the sides be x, which
means that the other side is A

x
, and the perimeter is p = 2x+ 2A

x
.

By differentiating, we can find the point in which this expression
takes a minimum value. Indeed, by considering the perimeter as a
function of x we have that

p′(x) = 2− 2
A
x2

,

which equals 0 when x =
√
A (here we only consider the positive

square root). This means that the minimum perimeter is pmin =
4
√
A, and p ≥ 4

√
A. Squaring this expression yields the result.

Also solved by Fernando Ballesta Yagüe, Universidad de Murcia,
Murcia, Spain; Padraig Condon, University of Birmingham, Birm-
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ingham, United Kingdom; Guillermo Girona San Miguel, Barcelona,
Spain; Ander Lamaison Vidarte, Berlin Mathematical School, Berlin,
Germany; Jose Pérez Cano, IES Alfonso XI, Alcalá la Real, Jaén,
Spain (one more solution); Henry Ricardo, Westchester Area Math
Circle, Purchase, NY, USA (one more solution), and Isaac Sánchez
Barrera, Barcelona Supercomputing Center (BSC).

E–42. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. For every integer n ≥ 1 let tn denote the n-th
triangular number, defined by tn = n(n+1)

2
. Find the values of n

for which
12 + 22 + . . .+ n2

t1 + t2 + . . .+ tn

is an integer number.

Solution 1 by Fernando Ballesta Yagüe, Universidad de Murcia,
Murcia, Spain. We have that

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Now, we have to find out what is the value of the denominator:

n∑
i=1

i(i+ 1)

2
=

1

2

n∑
i=1

(
i2 + i

)
=

1

2

(
n∑
i=1

i2 +
n∑
i=1

i

)

=
1

2

[
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2

]
=

1

12
[n(n+ 1)(2n+ 1) + 3n(n+ 1)]

=
1

12
n(n+ 1)[(2n+ 1) + 3]

=
1

12
n(n+ 1)(2n+ 4).

Therefore, we have that

12 + 22 + . . .+ n2

t1 + t2 + . . .+ tn
=

n(n+1)(2n+1)

6
n(n+1)(2n+4)

12

=
2(2n+ 1)

2n+ 4
=

2n+ 1

n+ 2
.
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We want this number to be an integer. However, at first sight it is
difficult to say for which value of n that expression is an integer.
In order to deduce it better, let’s divide:

2n+ 1

n+ 2
= 2−

3

n+ 2
.

Now, it is more clear that that expression will be an integer if and
only if 3

n+2
is an integer. That is going to happen when n + 2

divides 3, that is, when n+ 2 is equal to 1, 3, −1 or −3. Since n
is a positive integer, the only two possibilities are that n + 2 = 1
or n + 2 = 3. If n + 2 = 1, then n = −1, which cannot be our
solution since n is positive. If n+ 2 = 3, then n = 1.

Hence, the only solution is n = 1.

Solution 2 by Alberto Espuny Díaz, University of Birmingham,
Birmingham, United Kingdom. We have that

12 + 22 + . . .+ n2

t1 + t2 + . . .+ tn
=

n∑
i=1

i2

n∑
i=1

i(i+ 1)

2

=

2
n∑
i=1

i2

n∑
i=1

i2 +
n∑
i=1

i

=

2

(
n∑
i=1

i2 +
n∑
i=1

i

)
n∑
i=1

i2 +
n∑
i=1

i

− 2

n∑
i=1

i

n∑
i=1

i2 +
n∑
i=1

i

= 2− 2

n∑
i=1

i

n∑
i=1

i2 +
n∑
i=1

i

.

Now, this expression can only be an integer if An :=

n∑
i=1

i

n∑
i=1

i2 +
n∑
i=1

i
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is half of an integer. Notice that
n∑
i=1

(i2 + i) >
n∑
i=1

i for all n ≥ 1

but An is always positive, so the only possible solution must be

given when An =
1

2
. And this only happens if

n∑
i=1

i2 =
n∑
i=1

i, which

is obviously only true when n = 1, as the squares of natural
numbers are bigger than the original numbers except for 1.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany; Jose Pérez Cano, IES Alfonso XI, Alcalá la Real,
Jaén, Spain; Henry Ricardo, Westchester Area Math Circle, Pur-
chase, NY, USA, and the proposer.

E–43. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. In each square of a 2017× 2017 chessboard either a
+1 or a −1 is written. Let ri be the product of the numbers lying on
the i-th row, and let cj be the product of the numbers lying on the
j -th column. Show that r1+r2+. . .+r2017+c1+c2+. . .+c2017 6= 0.

Solution by Fernando Ballesta Yagüe, Universidad de Murcia,
Murcia, Spain. We are going to consider the chessboard as a
matrix whose entries are the squares of the chessboard. Let’s
begin with the extreme case where all the entries of the matrix are
1’s. Then, the result of summing all the row products and all the
column products is:

r1 + r2 + . . .+ r2017 + c1 + c2 + . . .+ c2017

=

2017 1′s︷ ︸︸ ︷
1 + 1 + . . .+ 1 +

2017 1′s︷ ︸︸ ︷
1 + 1 + . . .+ 1 = 2 · 2017 = 4034.

Now, let us see what happens when an entry is changed by its
opposite number (that is, when a 1 is changed by a −1 or viceversa).
Imagine we have a specific entry ai,j . The values of the product
of the numbers on the row and the ones on the column of this
number are ri and cj . If they both are 1, then if we change the
sign of ai,j , now both are −1. So, the total result would decrease
by 4 units (we had that ri + cj = 1 + 1 = 2 and now we have
ri + cj = −1 + (−1) = −2). If both ri and cj were −1, then the
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case would be the opposite: by changing the sign, their value would
be 1, so their sum would have passed from −2 to 2 (similarly, it
would have been increased by 4 units). The only case that is left
to consider is if either ri or cj is equal to 1 and the other to −1.
By changing the sign of ai,j we would change the sign of ri and cj .
As they were -1 and 1, now they would be 1 and -1, so the total
result would still be 0 (in this case, ri + cj does not change).

Therefore, we can conclude that there are only three possibilities:
to increase the total value of the sum r1 + r2 + . . . + r2017 + c1 +
c2 + . . . + c2017 by 4, to decrease it by 4, or to leave it as it is.
That means that, given the initial value 4034, by switching the
sign of cells we can only add to it an integer multiple of 4. In
particular, we can reach any possible state by switching the sign
of cells. However, 4034 is not divisible by 4, so we are never going
to be able to make the total sum 0 by subtracting 4 repeatedly.

Also solved by Alberto Espuny Díaz, University of Birmingham,
Birmingham, United Kingdom, and Ander Lamaison Vidarte, Berlin
Mathematical School, Berlin, Germany.

E–44. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Find all positive integers that are divisible by 385 and
have exactly 385 distinct positive divisors.

Solution by Jose Pérez Cano, IES Alfonso XI, Alcalá la Real,
Jaén, Spain. We have that 385 = 5·7·11. In order for any number
to be divisible by 385 it must be of the form N = 5a7b11cq for
some positive integers a, b, c and q . Now let us define σ : N→ N
such that, for any natural number A = pα1

1 p
α2
2 · · · pαnn , σ(A) =

(α1 + 1)(α2 + 1) · · · (αn + 1). Then, σ(A) is the number of divisors
of A. We now have σ(N) = 385 = 5 · 7 · 11, so we can deduce from
this that, in order for N to have exactly 385 divisors, q = 1 and a,
b, c are some permutation of the values 4, 6, 10. Hence, all the
solutions are

54761110, 56741110, 54710116, 51074116, 56710114, 51076114.

Also solved by Alberto Espuny Díaz, University of Birmingham,
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Birmingham, United Kingdom; Ander Lamaison Vidarte, Berlin Ma-
thematical School, Berlin, Germany; Henry Ricardo, Westchester
Area Math Circle, Purchase, NY, USA, and the proposer.

E–45. Proposed by Alberto Espuny Díaz, University of Birming-
ham, Birmingham, United Kingdom. Given a regular pentagon of
side length 1, find the triangle with the largest area contained
inside it.

Solution by the proposer. First of all, all three vertices of the
triangle will have to lay on the sides of the pentagon. Indeed,
assume that were not the case, and that we have a triangle with
maximum area, one of whose vertices is not on a side of the
pentagon. Then, we can move this vertex perpendicularly to the
opposite side of the triangle, which we consider the base, until it
reaches a side, thus increasing the altitude of the triangle and,
hence, its area. So the previous triangle did not have maximum
area.

Furthermore, in order to compute the area we may assume that all
three vertices of the triangle lay in vertices of the pentagon. Indeed,
assume that we have a triangle of maximum area, one of whose
vertices lays on a side of the pentagon, but not on a vertex. There
are two possible cases. If the triangle side opposite this vertex is
parallel to the side of the pentagon where the vertex lays, then the
area does not change if the vertex is moved to one of the vertices of
the pentagon side, so we may assume that it is in a vertex. If, on
the contrary, they are not parallel, then the area will increase by
taking the triangle vertex to one of the endpoints of the pentagon
side, so the original triangle was not of maximum area.

As the triangle has three vertices and the pentagon has five, in
any distribution of the vertices of the triangle among those of the
pentagon there will be at least two adjacent vertices, that is, one of
the sides of the triangle will coincide with one of the sides of the
pentagon. We may think of this side as the base of the triangle. It
is now clear that the area will be maximized for the vertex opposite
this side, as it maximizes the triangles’s altitude.
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Note that this isosceles triangle is of maximum area, but not the
only one. Any of the longer sides is parallel to one side of the
pentagon, so moving the opposite vertex along that pentagon side
will yield different triangles with the same area.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.

E–46. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Let ABCD be a trapezium with bases AB = a
and CD = b, respectively. Let M be a point on AD such that
βMA = αMD for some reals α and β . If the parallel to the
bases drawn from M meets BC at N , then show that

MN ≥ a
β

α+β · b
α

α+β .

Solution 1 by the proposer. Since in 4ACD we have
MA

MD
=
α

β
,

then
MA

AD
=

MA

MA+MD
=

MA

MA+ β
α
MA

=
α

α+ β
.

M P N

D C

BA

Figure 2: Sketch for Solution 1 of Problem E–46.

On the other hand, on account of Thales theorem’s, we have

MA

AD
=
MP

DC
=
MP

b
=

α

α+ β
,
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from which it follows that MP =
αb

α+ β
. Likewise, from triangle

ABC we obtain PN =
β a

α+ β
and

MN = MP + PN =
αb

α+ β
+

β a

α+ β
=
αb+ β a

α+ β
.

Now applying powered AM-GM inequality to the numbers b and a

with powers w1 =
α

α+ β
and w2 =

β

α+ β
yields

MN =
αb+ β a

α+ β
≥ a

β
α+β · b

α
α+β .

Solution 2 by Alberto Espuny Díaz, University of Birmingham,
Birmingham, United Kingdom. Let us define a function `(x)
that gives the length of a parallel to the base at any point x in the
line defined by AD . We have that `(0) = a and `(1) = b, where
we have taken x to be a variable that takes value 0 for AB and 1
for DC . By similarities, the function that measures the distance
between two points in lines AD and BC in a parallel to AB must
be linear. The only linear function that fulfills these conditions is
`(x) = a+ x(b− a).

For the point M we have x = AM
AD

= α
α+β

. Hence,

MN =
β

α+ β
a+

α

α+ β
b.

To complete the proof, consider the weighted AM-GM inequality
with weights β

α+β
and α

α+β
, which directly yields

MN ≥ a
β

α+β · b
α

α+β .

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.
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Easy–Medium Problems

EM–41. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Find all solutions of the equation p(x) = q(x),
where p(x) and q(x) are polynomials of degree 2 with leading
coefficient one such that

n∑
k=1

p(k) =
n∑
k=1

q(k),

and n is a positive integer.

Solution by the proposer. Let p(x) = x2 + ax + b and q(x) =
x2 + cx + d. Then equation p(x)− q(x) = 0 or p(x) = q(x) can
be written as

ax+ b = cx+ d

If the numbers a and c are distinct, then the solution is unique.
Indeed, since

n∑
k=1

p(k) = (1 + 2 + . . .+ n) a+ nb =
n(n+ 1)

2
a+ nb

and
n∑
k=1

q(k) = (1 + 2 + . . .+ n) c+ nd =
n(n+ 1)

2
c+ nd,

then we get

n(n+ 1)

2
a+ nb =

n(n+ 1)

2
c+ nd⇔

n+ 1

2
a+ b =

n+ 1

2
c+ d

From the preceding we conclude that the only solution of p(x)−

q(x) = 0 is x =
n+ 1

2
. If p(x) = q(x) then any real number x is

a solution. On the other hand, if a = c and b 6= d there are no
solutions, and we are done.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany; Jose Pérez Cano, IES Alfonso XI, Alcalá la Real,
Jaén, Spain, and Henry Ricardo, Westchester Area Math Circle, Pur-
chase, NY, USA.
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EM–42. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. If 2017 points on a circle are joined by straight lines
in all possible ways and no three of these lines meet at a single
point inside the circle, then find the number of triangles that can
be formed.

Solution by the proposer. We solve the problem for the general
case of n points on the circle. We distinguish the following cases:

1. We have triangles with all vertices lying inside the circle. These
are formed by exactly three chords, which in turn are formed
by exactly six points on the circumference.

Figure 3: Illustration of case 1.

Therefore, the number of triangles with all three vertices inside
the circle is the number of subsets of six points from the n
given points. That is,

(
n

6

)
.

2. We also have triangles with exactly two vertices lying inside
the circle. These are formed by chords emanating from exactly
five points on the circumference.
However, each set of five circumference points forms with
its chords exactly five such triangles. Thus, the number of
triangles with exactly two vertices inside the circle is five times
the number of subsets of fives points from the n points. That
is, 5

(
n

5

)
.

3. Other triangles are those with exactly one vertex lying inside
the circle. These are formed by chords emanating from exactly
four points on the circumference. However, each group of four
circumference points forms with its chords exactly four such
triangles.
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Figure 4: Illustration of case 2.

Figure 5: Illustration of case 3.

Therefore, the number of triangles with exactly one vertex
inside the circle is four times the number of subsets of four
points from the n points. That is, 4

(
n

4

)
.

4. Finally, there remain only the triangles with all three vertices
on the circumference. The number of such triangles is the
number of subsets of three points from the n points. That is,(
n

3

)
.

Thus the total number of triangles is

N(n) =

(
n

6

)
+ 5

(
n

5

)
+ 4

(
n

4

)
+

(
n

3

)
,

and in the particular case when n = 2017 we have

N(2017) = 94212958848915816.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.
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EM–43. Proposed by Nicolae Papacu, Slobozia, Romania. Let a,
b, c be three positive real numbers such that

√
a+
√
b+
√
c = 1.

Prove that
√
a

a2 + 2bc
+

√
b

b2 + 2ca
+

√
c

c2 + 2ab
≤

1

a
+

1

b
+

1

c
.

Solution 1 by Henry Ricardo, Westchester Area Math Circle,
Purchase, NY, USA. By the AM-GM inequality we have∑

cyclic

√
a

a2 + 2bc
≤
∑
cyclic

√
a

a2 + 2((b2 + c2)/2)

=
1

a2 + b2 + c2

∑
cyclic

√
a

=
1

a2 + b2 + c2
.

But the Cauchy-Schwarz inequality gives us

1 =
(√

a+
√
b+
√
c
)2

=

(
a ·

1
√
a

+ b ·
1
√
b

+ c ·
1
√
c

)2

≤ (a2 + b2 + c2)

(
1

a
+

1

b
+

1

c

)
,

which implies that

a2 + b2 + c2 ≥
1

1
a

+ 1
b

+ 1
c

, or
1

a2 + b2 + c2
≤

1

a
+

1

b
+

1

c
,

and finishes the proof.

Solution 2 by the proposer. Applying Cauchy’s inequality to the

vectors ~u = (a,
√
bc,
√
bc) and ~v =

(
1
√
a
,

1
√
b
,

1
√
c

)
, we have

1 = (
√
a+
√
b+
√
c)2 =

(
a ·

1
√
a

+
√
bc ·

1
√
b

+
√
bc ·

1
√
c

)2

≤ (a2 + bc+ bc)

(
1

a
+

1

b
+

1

c

)
,
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from which it follows that
√
a

a2 + 2bc

√
a

(
1

a
+

1

b
+

1

c

)
(cyclic).

Adding up the preceding inequalities yields
√
a

a2 + 2bc
+

√
b

b2 + 2ca
+

√
c

c2 + 2ab
≤ (
√
a+
√
b+
√
c)

(
1

a
+

1

b
+

1

c

)
.

Equality holds when a = b = c = 1/9, and we are done.

EM–44. Proposed by Andrés Sáez-Schwedt, Universidad de León,
León, Spain. Let ABC be a triangle with AB = AC > BC , and
let O be the center of its circumcircle Γ. The tangent to Γ at C
meets the line AB at D . In the minor arc AC of Γ, consider the
point E such that

∠EOC + 2∠DOA = 360◦.

If BE meets CD at F , show that FA = FC .

Solution 1 by Ander Lamaison Vidarte, Berlin Mathematical
School, Berlin, Germany. Let P be the point of intersection of
the tangents to Γ through A and B . Let α = ∠BCA = ∠PBA.
Since the triangle ABP is isosceles, we have AB = 2BP cosα,
and AD = BD + 2BP cosα. We obtain the following identities:

CD2 = BD ·AD = BD2 + 2BD ·BP cosα,

AP 2 + CD2 = BP 2 +BD2 − 2BD ·BP cos(180◦ − α) = DP 2,

OP 2 + CD2 = OA2 +AP 2 + CD2 = OC2 +DP 2.

From this last equation we conclude that OD ⊥ CP . The angles
∠PCB and ∠DOA add up to 180◦ , since the sides are perpendic-
ular. Thus ∠DOA = 1

2
∠EOC = ∠EBC = ∠FBC .

We claim that P and F are symmetric with respect to OA. Indeed,
F is in the tangent to Γ through C , so its symmetric must be in
the tangent to Γ through B . Moreover, it must be the point F ′ on
that tangent satisfying ∠F ′CB = ∠FBC . That point is P . Then
FA = FC follows from PA = PB .
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Solution 2 by the proposer. Since ∠EOC + 2∠DOA = 360◦ ,
there exists a point E′ on the minor arc AB of Γ such that

∠E′OA = ∠AOE and ∠DOE′ = ∠COD,

that is, E′ is at the same time the symmetric point of E with
respect to AO and the reflection of C with respect to DO . Thus,
DE′ is the second tangent from D to Γ.

Figure 6: Scheme for problem EM-44.

Let F ′ be the point of intersection of the tangents to Γ at A and
B . Now, D is a point of AB , the polar line of F ′ with respect to
the circle Γ, so F ′ must lie on the polar of D , which is line CE′ ,
i.e. C , E′ , F ′ are collinear.

But then, F and F ′ must be symmetric points with respect to AO ,
because they are defined as the intersection of symmetric lines.
Hence, FC = F ′B = F ′A = FA.

EM–45. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Let A1, A2, . . . , An be the vertices of an n-gon in-
scribed in a circle of center O . If O and the Ai ’s are lattice points,
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then prove that the square of the perimeter of the n-gon is an even
number.

Solution. The statement is not correct. It has been corrected and
published as Problem EM–47 [Correction].

EM–46. Proposed by Ángel Plaza de la Hoz, Department of Math-
ematics, University of Las Palmas de Gran Canaria, Spain. Prove
that for any positive integer n the chain of inequalities

F 1/Ln
n ≤ F 1/(2Ln)

2n ≤
F 1/Fn
n + L1/Ln

n

2
≤ F 1/(2Fn)

2n ≤ L1/Fn
n

holds, where Fn is the n-th Fibonacci number, defined by F0 = 0,
F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2 , and Ln is the n-
th Lucas number, defined by L0 = 2, L1 = 1, and for n ≥ 2,
Ln = Ln−1 + Ln−2 .

Solution 1 by Jose Pérez Cano, IES Alfonso XI, Alcalá la Real,
Jaén, Spain. Let’s go step by step

1. F 1/Ln
n ≤ F

1/(2Ln)
2n ⇐⇒ F 2

n ≤ F2n . In order to prove the latter,
the next result is needed:

F2n = Fn+1 · Fn + Fn · Fn−1.

By induction, for n = 2, F4 = F3 ·F2 +F2 ·F1 = 2 ·1+1 ·1 = 3.
Now, considering it true up to some n,

F2(n+1) = F2n+1 + F2n = 2F2n + F2n−1 = 3F2n − F2(n−1).

And now, applying the hypothesis of induction,

3F2n − F2(n−1) = 3(Fn+1Fn + FnFn−1)− (FnFn−1 + Fn−1Fn−2)

= 3Fn+1Fn+2FnFn−1−(Fn+1−Fn)(2Fn−Fn+1)

= 2FnFn−1 + F 2
n+1 + 2F 2

n = 2FnFn+1 + F 2
n+1

= Fn+2Fn+1 + Fn+1Fn.

Using this result, the statement to prove is equivalent to

F 2
n ≤ Fn(Fn+1 + Fn−1)⇐⇒ Fn ≤ Fn+1 + Fn−1 = Fn + 2Fn−1,
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which is self-evident since every term is positive. Finally,
equality holds if and only if Fn−1 = 0 or, similarly, if and only
if n = 1.

2. F
1

2Ln
2n ≤ F

1
Fn
n +L

1
Ln
n

2
. Applying the AM-GM inequality is enough

to prove that

F
1
Ln
2n ≤ F

1
Fn
n L

1
Ln
n ⇐⇒ Ln ≥

F2n

F
Fn
Ln
n

.

We get now that

F2n

F
Fn
Ln
n

=
Fn(Fn+1 + Fn−1)

F
Fn
Ln
n

=
Fn + 2Fn−1

F
Fn
Ln
−1

n

≤
Fn + 2Fn−1

Fn
< 3 < Ln,

where in the last term we use the fact that Ln ≥ 2Fn for n 6= 1,
which can be proven by induction. The cases where Ln ≤ 3
can be checked one by one since they are just n = 0, 1 and 2
and, as before, equality only holds for n = 1.

3. F
1
Fn
n +L

1
Ln
n

2
≤ F

1
2Fn
2n . Using the first inequality I have proven, it

is enough with proving

F
1
Fn
n + L

1
Ln
n

2
≤ F

1
Fn
n ⇐⇒ F

1
Fn
n ≥ L

1
Ln
n .

Consider now the function f(x) = ln(x)

x
. When differenti-

ating, we notice that it is strictly decreasing for x > e, as
f ′(x) = 1−ln(x)

x2 . Since Ln > Fn , f(Fn) > f(Ln) and taking
exponentials at both sides we are done. The remaining cases
n = 0, 1 and 2 can be tested one by one, and equality only
holds for n = 1.

4. F
1

2Fn
2n ≤ L

1
Fn
n ⇐⇒ F2n ≤ L2

n ⇔ Fn(Fn+1 + Fn−1) = F 2
n +

2FnFn−1 ≤ 3F 2
n < (2Fn)2 ≤ L2

n . Since I have used the fact
that Ln ≥ 2Fn , which only holds for n 6= 1, equality will only
hold for n = 1.
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Solution 2 by the proposer. The third inequality follows by the
AM-GM inequality and by the fact that Ln ≥ Fn for n ≥ 1, so

F 1/Fn
n + L1/Ln

n

2
≤
√
F

1/Fn
n L

1/Ln
n ≤

√
(FnLn)1/Fn = F

1/(2Fn)
2n

since FnLn = F2n .

The fourth inequality follows since
√
F2n =

√
FnLn ≤ Ln .

The first inequality follows similarly, because Fn ≤
√
FnLn =√

F2n .

Finally, the second inequality follows also by the AM-GM inequality
since

F
1/(2Ln)
2n =

√
F

1/Ln
n · L1/Ln

n ≤
F 1/Ln
n + L1/Ln

n

2
≤
F 1/Fn
n + L1/Ln

n

2
.
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Medium–Hard Problems

MH–41. Proposed by Mihály Bencze, Braşov, Romania. Deter-
mine [

n∑
k=1

(k + 1)
1

k4+k2+1

]
,

where [x] denotes the integer part of x.

Solution by Henry Ricardo, Westchester Area Math Circle, Pur-
chase, NY, USA. We show that the integer part is n.

First of all, we have

n∑
k=1

(k + 1)
1

k4+k2+1 >
n∑
k=1

1 = n. (1)

Next, we apply Bernoulli’s inequality —(1 + x)r ≤ 1 + rx for x ≥
1 and r ∈ [0, 1]— to see that

n∑
k=1

(k + 1)
1

k4+k2+1 ≤
n∑
k=1

(
1 +

k

k4 + k2 + 1

)
= n+

n∑
k=1

k

k4 + k2 + 1

= n+
1

2

n∑
k=1

(
1

k2 − k + 1
−

1

k2 + k + 1

)
= n+

1

2

(
1−

1

n2 + n+ 1

)
< n+

1

2
. (2)

Now we see that (1) and (2) imply that the integer part of the sum
is n.

Also solved by the proposer.

MH–42. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. In Mathcontestland there are 2017 towns. Every
pair of towns is either connected by a single road, or is not con-
nected. If we consider any subset of 2015 towns, the total number
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of roads connecting these towns to each other is a constant. If
there are R roads in Mathcontestland, then find all possible values
of R.

Solution 1 by Alberto Espuny Díaz, University of Birmingham,
Birmingham, United Kingdom. Two possible solutions are when
there are no roads (R = 0) and when there is a road between every
two towns, in which case R = 2017·2018

2
= 2033136 and there are

2029105 roads in any subset of 2015 towns. We claim that these
are the two unique solutions to this problem.

We work in general with n towns (the solutions, then, are given by
R = 0 and R =

(
n

2

)
). For ease of notation, we label the towns as

a1, a2, . . . , an . Let di , i ∈ {1, . . . , n}, be the number of roads that
start from ai . Notice that

∑n
i=1 di = 2R, as we count each road

twice, once from each city it connects. Given that R is a value
fixed by the statement, the condition that the number of roads
connecting any subset of n − 2 cities is constant is equivalent
to saying that the number of roads incident to any pair of cities
(that is, the number of roads that go from each of the cities to
the remaining n− 2 cities plus the possible road between the two
cities) is constant too. We will refer to this number as di,j .

Now assume that there are two towns ai and aj such that di ≤
dj − 2. Then, di,k ≤ di + dk < dj + dk − 1 ≤ dj,k for any k 6=
i, j , which is a contradiction of the statement hypothesis. So
all towns must have di equal to d or d + 1, for some fixed value
d ∈ {0, 1, . . . , n− 2}.

Assume that there are at least two towns with d roads reaching
them (say, ai and aj ) and at least two with d+1 (ak and a` ). Then,
di,j ≤ 2d < 2d+ 1 ≤ dk,` , so we reach a new contradiction.

If there is only one town with d + 1 roads incident to it (say, ai ),
then choose a town aj it is connected to and a town ak that is
connected to aj . Then, dj,k = 2d − 1 < 2d = di,j , so we reach
a new contradiction. If there are no such towns aj and ak , that
means that there is only one road reaching aj , so dj = d = 1.
In such a case, choose any two towns connected by a road, say
a` and am . Then d`,m = 0 < 1 ≤ di,k for any k, a contradiction
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again.

If, on the contrary, there is only one town with d roads reaching
it (say, ai ), then choose a town aj that is connected to ai . Then,
for any k 6= i, j , di,j = 2d < 2d + 1 ≤ dj,k , a new contradiction.
If no such aj exists, that must mean di = 0, but then, taking
any two towns a` and am which are not connected (which must
exist, as there is at most one road reaching each town) we have
di,` = 1 < 2 = d`,m , a new contradiction. Hence, we must have
that all towns have the same number of roads incident to them, d.

Now, the cases d = 0 and d = n − 1 give the two solutions we
already discussed, so assume d ∈ {2, 3, . . . , n−2}. Then, no town
is connected to every other town, and every town is connected to
some town. Choose any town ai , and choose a town aj to which
it is connected by a road and a town ak to which it is not. Then,
di,j = 2d − 1 < 2d = di,k , so we reach one last contradiction.
We have exhausted all possible cases, so there can be no other
solution to the problem.

Solution 2 by Sophie Tandonnet, University of Warwick, Coven-
try, United Kingdom, and Tássio Naia, University of Birming-
ham, Birmingham, United Kingdom. Either every pair of towns
is connected, or there are no roads (i.e., R ∈ {0, 2017× 2016/2}).
Our solution relies on two claims, which are more general than
strictly necessary to solve the problem. In particular, they al-
low us to understand what happens to R when 2017 and 2015
are replaced, respectively, by positive integers n and s, where
3 < s < n.

We begin by introducing some some notation. Let V be a set of
towns. Instead of thinking of towns as connected (or not) by a road,
let us say that each town is connected to all others, but some of
the roads are blocked and cannot be used. For all distinct towns
x, y ∈ V, we write xy to refer to the road connecting x and y ;
let us say that x is a red neighbour of y (or vice-versa) if xy is
blocked; we say that x is a green neighbour of y (or vice-versa)
otherwise. In the same spirit, we say that a road is red if it is
blocked and green otherwise, and we say that a subset S ⊆ V
is monochromatic if all roads between towns in S have the same
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colour. Also, if s is an integer, we shall say that V is s-uniform if
there exists a constant m such that for all S ⊆ V with |S| = s
there are precisely m green roads among towns in S . (In the
problem V is 2015-uniform.) Finally, for all S ⊆ V, we say that S
is d-regular if every town in S has precisely d green neighbours
(and |S| − d− 1 red neighbours) in S ; we say that S is regular if
it is d-regular for some integer d.

Claim 1. If s = |V |−1 > 2 and V is s-uniform, then V is regular.

Proof. Fix x ∈ V . Let g be the number of green roads in V , let
k be the number of green roads in V − x, and, for each x ∈ V ,
let d(x) be the number of green neighbours of x. Note that for all
x, y ∈ V we have g = d(x) + k = d(y) + k, so d(x) = d(y) and
thus V is regular.

Claim 2. If |V | > 3 and V \ {x} is regular for all x ∈ V , then V
is monochromatic.

Proof. We begin by observing that if all roads leading to some town
x have the same colour c, then all roads of V must have colour c,
so V is monochromatic. (Indeed, choose y ∈ V \ {x} and note
that V \ {y} is monochromatic with colour c; therefore, for all
w, z ∈ V \ {x, y} the road wz has colour c, and so do all roads
in V \ {x} by the choice of y .) So we may assume (looking for a
contradiction) that every town has at least one green neighbour
and one red neighbour. Let a ∈ V be an arbitrarily chosen town.
Then a has both a green neighbour vg and a red neighbour vr .

We now show that for each b ∈ V \{a, vg, vr}, the road bvg is green.
Let d be the number of green neighbours of vg in V \ {b}. Since
V \ {b} is regular, it follows that vr has d green neighbours in
V \ {b}. Furthermore, vg has d− 1 green neighbours in V \ {a, b}
and vr has d green neighbours in V \ {a, b}; therefore, since
V \ {a} is regular, vg is a green neighbour of b.

To conclude, recall that V \{b} is regular, and let d be the number
of green neighbours of each town in V \ {b}. By our asumption,
every town has a red neighbour, so vr is the only red neighbour of
vg . This in turn implies that d ≥ |V | − 2; however, both a and vg
are red neighbours of vr , so d < |V | − 3, a contradiction.
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We now combine the claims. Let V be a set of 2017 towns. Since
V is 2015-uniform, every subset of V with 2016 elements is regu-
lar (by Claim 1) and therefore V is monochromatic (by Claim 2).
Therefore, either every road is green (unblocked) or every road is
red (blocked).

Solution 3 by the proposer. We consider the general case with
n towns. Let K denote the constant number of roads connecting
any subset of n− 2 towns and let cij ∈ {0,1} denote the number
of roads connecting town i and town j . Finally, for i = 1, 2, . . . , n
let di denote the total number of roads connected to town i. Note
that

R ≤
(
n

2

)
=
n(n− 1)

2
.

Clearly,
n∑
i=1

di = 2R and
∑

cij = R,

where the latter sum is over all 2−element subsets {i, j} of the
set {1, 2, . . . , n}. The number of roads connected to at least one of
the towns with number i or j is equal to di + dj − cij . Thus, for
any 2−element subsets {i, j} ⊂ {1, 2, . . . , n}, we have

K = R− di − dj + cij.

Adding all these equations for every 2−element subset {i, j} yields(
n

2

)
K =

(
n

2

)
R− 2(n− 1)R+R,

which may be written as

n(n− 1)K = (n− 2)(n− 3)R.

Note that both n(n − 1) and (n − 2)(n − 3) are divisible by 2,
and that the only integer k > 2 which divides both n(n− 1) and
(n − 2)(n − 3) is 3, this latter case occurring if and only if n is
divisible by 3. Since 3 does not divide 2017, in the situation of the
given problem n(n−1)/2 and (n−2)(n−3)/2 are coprime. Hence,
R is a multiple of n(n − 1)/2. As R ≤ n(n − 1)/2 with equality
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when all the pairs of towns a are connected, the only possibilities
are R = n(n − 1)/2 or R = 0. Therefore, the total number of
roads is

R = 2017 · 1008 = 2033136 or R = 0.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.

MH–43. Proposed by Andrés Sáez-Schwedt, Universidad de León,
León, Spain. Points A, B , C and D are collinear in that order.
On a circle ω through B and C , two new points E , F are chosen,
such that lines AE and DF meet on ω . The tangents to ω at B
and C meet at G (possibly at infinity). The tangents to ω at E and
F meet GA and GD at P and Q, respectively. Prove that line PQ
is tangent to ω .

Solution by the proposer. Define H = AE ∩ DF and let PH ′

(with H ′ 6= E ) be the second tangent from P to ω . Also, I =
EH ′ ∩BC and E′ is the second point of intersection of HI with
ω . Note that I is the intersection of BC , the polar line of G with
respect to the circle ω , and EH ′ , the polar of P , so that PG is
the polar of I . Being A, P , G collinear, the polar of A must also
pass through I , and also through G, because A lies on the polar
of G. Therefore, AIG is a self-polar triangle.

Now, since I is one of the diagonal points of the cyclic quadrilateral
EHH ′E′ , the other two diagonal points must form a self-polar
triangle with I . Line E′H ′ must cut EH at a point in the polar
of I , a point which must necessarily be A, i.e. A, E′ , H ′ are
collinear. Similarly, the third diagonal point EE′ ∩HH ′ must lie
on the polars of A and I , so it can only be G, the pole of AI ,
which means that EE′ and HH ′ pass through G.

What we have proved up to now is the following: the second tangent
from P to ω is PH ′ , where H ′ is the second point of intersection
of GH with ω . Repeating the same reasoning with Q, the second
tangent from Q to ω is QH ′ , for the same point H ′ as before.
Thus, PH ′ and QH ′ are the same line, tangent to ω .
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Figure 7: Scheme for problem MH-45

MH–44. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Let x, y and z be be three nonzero real numbers

such that
1

x
+

1

y
+

1

z
=

1

xyz
. For all positive reals a, b, c, prove

that
(a+ b)x+ (b+ c)y + (c+ a)z

√
ab+ bc+ ca

≥ 2.

Solution by the proposer. We have

(a+ b)x+ (b+ c)y + (c+ a)z

= (a+ b+ c) (x+ y + z)− (ax+ by + cz)

=
√

(a+ b+ c)2 (x+ y + z)2 − (ax+ by + cz)

=
√

(a2+b2+c2+2(ab+bc+ca))(x2+y2+z2+2(xy+yz+zx))

− (ax+ by + cz).
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Applying CBS to the vectors ~u = (
√

2(ab+ bc+ ca),
√
a2 + b2 + c2)

and ~v = (
√

2(xy + yz + zx),
√
x2 + y2 + z2) yields

2
√

(ab+bc+ca)(xy+yz+zx)+
√

(a2+b2+c2)(x2+y2+z2)

≤
√

(a2+b2+c2+2(ab+bc+ca))(x2+y2+z2+2(xy+yz+zx)).

Writing the constrain in the form xy + yz + zx = 1 we get

(a+ b)x+ (b+ c)y + (c+ a)z

= (a+ b+ c) (x+ y + z)− (ax+ by + cz)

≥ 2
√

(ab+bc+ca)+
√

(a2+b2+c2)(x2+y2+z2)−(ax+by+cz).

Again, applying CBS to the vectors ~r = (a, b, c) and ~s = (x, y, z)
we have√

(a2 + b2 + c2) (x2 + y2 + z2)− (ax+ by + cz) ≥ 0,

and

(a+ b)x+ (b+ c)y + (c+ a)z ≥ 2
√

(ab+ bc+ ca)

follows. Equality holds when a = b = c and x = y = z =
√

3/3,
and we are done.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.

MH–45. Proposed by Ander Lamaison Vidarte, Berlin Mathemati-
cal School, Berlin, Germany. We say that a set of positive integers
S is good if there is a function f : N → S such that no integer
k with 2 ≤ k ≤ 2017 can be written as xf(x)

yf(y)
. Find the smallest

positive integer n such that S = {1, 2017, 20172, . . . , 2017n} is
good, or prove that such an integer does not exist.

Solution by the proposer. We claim that n = 10 is the smallest
value. To see that the set S cannot be good with n ≤ 9, we note
that in this case |S| = n+ 1 ≤ 10. By pigeonhole principle, two of
the numbers 1, 2, 22, . . . , 210 have the same image by f . If these
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values are 2i and 2j with i < j , setting x = 2j and y = 2i we
obtain xf(x)

yf(y)
= 2jf(2j)

2if(2i)
= 2j−i , which is an integer between 2 and

210 = 1024.

Now we want to construct a function f for n = 10. Let g(k) denote
the number of prime numbers in the factorization of k, counted
with multiplicity (for example, g(2a3b) = a+ b). Then we see that
the only positive integer with g(k) = 0 is k = 1, and the smallest k
with g(k) ≥ 11 is k = 211 = 2048. Hence 1 ≤ g(k) ≤ 10 for every
2 ≤ k ≤ 2017.

Notice that g(2017) = 1 and g(2017k) = k. Since 1 and 11 are
relatively prime, the numbers g(1), g(2017), . . . , g(201710) have
different residues when dividing by 11. For every n, choose f(n)
from S so that g(n)+g(f(n)) is divisible by 11. That way, if yf(y)
divides xf(x) for some x and y , then we have

g

(
xf(x)

yf(y)

)
= g(x) + g(f(x))︸ ︷︷ ︸

divisible by 11

− (g(y) + g(f(y)))︸ ︷︷ ︸
divisible by11

which is divisible by 11. In particular, xf(x)

yf(y)
cannot be an integer

between 2 and 2017. This concludes our proof.

MH–46. Proposed by Ismael Morales López, Universidad Autó-
noma de Madrid, Madrid, Spain. Let a, b, c be the lengths of the
sides of a given triangle ABC , and ma , mb , mc its medians. Prove
that it is true that∑

cyclic

a+ b

c2 + 2ab+ 3bc+ 3ca
≥

1√
m2
a +m2

b +m2
c

.

Solution by the proposer. First, we use the rearrangement in-
equality on the sequences a, b, c and 1

a2+2bc+3ca+3ab
, 1
b2+2ca+3ab+3bc

,
1

c2+2ab+3bc+3ca
. Without loss of generality, we may assume that

a ≥ b ≥ c, and from this we get

1

a2+2bc+3ca+3ab
≤

1

b2+2ca+3ab+3bc
≤

1

c2+2ab+3bc+3ca
.
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The last inequality can be proved as follows:

1

b2 + 2ca+ 3ab+ 3bc
−

1

a2 + 2bc+ 3ca+ 3ab

=
(a− b)(a+ b+ c)

(a2 + 2bc+ 3ca+ 3ab)(b2 + 2ca+ 3ab+ 3bc)
≥ 0;

the other one is completely analogous. So, we know that

∑
cyclic

b

a2 + 2bc+ 3ca+ 3ab
≥
∑
cyclic

a

a2 + 2bc+ 3ca+ 3ab
,

∑
cyclic

c

a2 + 2bc+ 3ca+ 3ab
≥
∑
cyclic

a

a2 + 2bc+ 3ca+ 3ab
,

and adding up both yields

∑
cyclic

b+ c

a2 + 2bc+ 3ca+ 3ab
≥
∑
cyclic

2a

a2 + 2bc+ 3ca+ 3ab
.

So it is enough to prove that

a

a2+2bc+3ca+3ab
+

b

b2+2ca+3ab+3bc
+

c

c2+2ab+3bc+3ca

≥
1

2
√
m2
a +m2

b +m2
c

.

It is obvious that

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0⇒ 3(a2 + b2 + c2) ≥ (a+ b+ c)2

and it is a well known fact that ma =
√

2b2+2c2−a2

4
. Therefore,

adding up the three equations, we obtain 3(a2 + b2 + c2) = 4(m2
a +

m2
b +m2

c). Now, we will use CBS inequality in the form of Arthur
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Engel:

∑
cyclic

a

a2 + 2bc+ 3ca+ 3ab
=
∑
cyclic

a2

a3 + 2abc+ 3ca2 + 3a2b

≥
(a+ b+ c)2∑

cyclic a
3 + 2abc+ 3ca2 + 3a2b

=
(a+ b+ c)2

(a+ b+ c)3
=

1

(a+ b+ c)

≥
1√

3(a2 + b2 + c2)
=

1

2
√
m2
a +m2

b +m2
c

,

and we are done.
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Advanced Problems

A–41. Proposed by Marcin J. Zygmunt, AGH University of Science
and Technology, Kraków, Poland. Let γ1 < γ2 < . . . < γn be real
numbers,

f(x) = x+
1

γ1 − x
+

1

γ2 − x
+ · · ·+

1

γn − x
,

and let α, β ∈ R, α < β . Compute the total length of the preimage
f−1([α, β]) (the total length of a set consisting of intervals is the
sum of their lengths.)

Solution by the proposer. First, we observe that f is continuous
and strictly increasing in its domain, i.e. in

(−∞, γ1) ∪ (γ1, γ2) ∪ · · · ∪ (γn,+∞).

Moreover the image of each one of these intervals is the whole real
line. Hence the preimage of the interval [α, β] consists in n + 1
disjoint intervals. That is,

f−1([α, β]) = (α1, β1) ∪ (α2, β2) ∪ · · · ∪ (αn+1, βn+1),

where α1,α2, . . . ,αn+1 and β1,β2, . . . ,βn+1 are solutions to the
equations f(x) = α and f(x) = β , respectively. Then, the total
length of f−1([α, β]) is

L =

n+1∑
i=1

(βi − αi) =

n+1∑
i=1

βi −
n+1∑
i=1

αi.

On the other hand, every solution of the equation f(x) = α is also
a zero of the polynomial

p(x) = (x− α)(x− γ1) · · · (x− γn) + an−1x
n−1 + · · ·

= xn+1 − (α+ γ1 + γ2 + · · ·+ γn)xn + an−1x
n−1 + · · · ,

from which it follows that

α1 + α2 + · · ·+ αn+1 = α+ γ1 + γ2 + · · ·+ γn
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on account of Viète’s formulae. Likewise, from f(x) = β we get

β1 + β2 + · · ·+ βn+1 = β + γ1 + γ2 + · · ·+ γn.

Subtracting the first from the second expression we obtain that
the total length is

L =

n+1∑
i=1

βi −
n+1∑
i=1

αi = β − α.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.

A–42. Proposed by Óscar Rivero Salgado, BarcelonaTech, Barce-
lona, Spain. Let p be a prime number and consider A a p × p
matrix with complex entries, satisfying that Tr(A) = Tr(A2) =
. . . = Tr(Ap−1) = 0 and Tr(Ap) = p. Find det(Ai + j Id), for i,
j ∈ Z.

Solution by the proposer. Let λ1, . . . , λp the eigenvalues of A.
Then, we know that

∑p
i=1 λ

k
i = 0 for 1 ≤ k ≤ p− 1 and

∑p
i=1 λ

p
i =

p. From the theory of symmetric polynomials, this determines
completely (up to order) the λi , which must be given by λi = ζip ,
where ζp is a primitive p-th root of unit.

Now, clearly

det(Ai + j Id) =

p∏
k=1

(ζkip + j).

If i is a multiple of p, then we directly get that the result is (1+j)p .
Elsewhere,

det(Ai + j Id) =

p∏
k=1

(ζkp + j).

Observe that

Xp − 1 =

p∏
k=1

(X − ζkp) = (−1)p
p∏
k=1

(ζkp −X),
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and taking now X = −j , it yields that

(−j)p − 1 = (−1)p
p∏
k=1

(ζkp + j).

Hence

det(Ai + j Id) =

p∏
k=1

(ζkp + j) = jp + (−1)p+1.

Also solved by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany.

A–43. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Bar-
celona, Spain. Find all real solutions of the following system of
equations

x4 + x2 + (y4 + 1)
√
y4 + 1 = (2 +

√
2) z2
√
z4 + 1,

y4 + y2 + (z4 + 1)
√
z4 + 1 = (2 +

√
2)x2

√
x4 + 1,

z4 + z2 + (x4 + 1)
√
x4 + 1 = (2 +

√
2) y2

√
y4 + 1.


Solution by the proposer. Adding up the given equations yields∑

cyclic

[
x4 + x2 + (x4 + 1)

√
x4 + 1− (2 +

√
2)x2

√
x4 + 1

]
= 0.

Now we claim that for all nonzero real x,

x4 + x2 + (x4 + 1)
√
x4 + 1− (2 +

√
2)x2

√
x4 + 1 ≥ 0

holds. Indeed, the claimed inequality may be written in the more
convenient form

x4 + x2 + (x4 + 1)
√
x4 + 1 ≥ (2 +

√
2)x2

√
x4 + 1.

After diving both terms by x2
√
x4 + 1, the expression becomes

x2 +
1

x2
+

x2 + 1
√
x4 + 1

≥ 2 +
√

2.
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To prove the above inequality we consider the function f : R\{0} →
R defined by

f(x) = x2 +
1

x2
+

x2 + 1
√
x4 + 1

.

We have

f ′(x) = 2x−
2

x3
+

2x
√
x4 + 1

−
2(x2 + 1)x3√

(x4 + 1)3

=
2(x− 1) (x+ 1) (x2

√
(x4 + 1)3 − x4 +

√
(x4 + 1)3)

x3
√

(x4 + 1)3

and the only real roots of f ′(x) = 0 are x = ±1.

On the other hand,

f ′′(x) = 2 +
6

x4
+

2
√
x4 + 1

−
6x2 + 14x4√

(x4 + 1)3
+

12(x2 + 1)x6√
(x4 + 1)5

and f ′′(±1) = 8−
√

2 > 0. Therefore, f has two minimum points
at x = ±1. This means that f(x) ≥ f(±1) for all nonzero real
number x. That is,

f(x) = x2 +
1

x2
+

x2 + 1
√
x4 + 1

≥ 2 +
√

2 = f(±1).

Equality holds when x = ±1.

Finally, on account of the preceding we conclude that the only
solutions of the given system are

(−1,−1,−1),(−1,−1, 1),(−1, 1,−1),(1,−1− 1),

(−1, 1, 1),(1,−1, 1),(1, 1,−1), and (1, 1, 1),

and we are done.
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A–44. Proposed by Nicolae Papacu, Slobozia, Romania. Let a
and x0 be real numbers and let {xn}n≥0 be the sequence defined
by xn+1 = ax2

n − (2a− 1)xn .

(a) Prove that the sequence {xn}n≥0 is convergent if, and only if,
ax0 ∈ [a− 1, a].

(b) If ax0 ∈ [a − 1, a], compute lim
n→+∞

n(xn − `), where ` =

lim
n→+∞

xn .

Solution by Ander Lamaison Vidarte, Berlin Mathematical School,
Berlin, Germany. The statement of the problem is false. Let
a = 2 and x0 = 0. Then the sequence xn = 0 satisfies the
recurrence and converges, but ax0 = 0 /∈ [a− 1, a].

Part (b) does not have a solution, since we can also have that ax0 ∈
[a− 1, a] and {xn}n≥0 does not converge. For example, let a = 3
and x0 = 1. A simple computation gives x1 = −2 and x2 = 22.
We now claim that, for n ≥ 3 we have xn > 2xn−1 , implying that
the sequence does not converge. Indeed, let n ≥ 3 be the smallest
value for which xn ≤ 2xn−1 . Then in particular xn−1 ≥ x2 = 22
and so xn = xn−1(3xn−1−5) > 2xn−1 , contradiction. We conclude
that the sequence does not converge.

A–45. Proposed by Ander Lamaison Vidarte, Berlin Mathematical
School (BMS), Berlin, Germany. Let n be a positive integer, and let
A be a n× (n+ 1) matrix with integer entries. Assume that, for
every prime p, the matrix A considered as a matrix with entries
in Z/pZ has rank n. Prove that there exists a matrix B of size
(n+ 1)× n with integer entries such that AB = Idn .

Solution 1 by the proposer. Let Ai be the minor obtained by
removing the i−th column and let di = det(Ai). Then from the
condition on the statement we know that gcd(d1, d2, ..., dn+1) = 1
because for each prime p at least one minor is not divisible by
p. We claim that there exist integers c1, c2, ..., cn+1 such that
c1d1 + c2d2 + ...+ cn+1dn+1 = 1. In fact, let gi = gcd(d1, d2, ..., di).
We claim that there are c1, c2, ..., ci such that c1d1 + c2d2 + ... +
cidi = gi . This can be proved by induction. For i = 2, this is



164 Arhimede Mathematical Journal

Bézout’s identity. If those coefficients exist for some i, then using
Bézout’s identity, gi+1 = gcd(gi, di+1) = ugi + vdi+1 = uc1d1 +
uc2d2 + ... + ucidi + vdi+1 , which means that these coefficients
exist for i+ 1. By induction, the claim follows.

Construct matrix C by placing an extra row on top of matrix A,
with c1i = (−1)ici . Expanding the determinant by the first row we
see that det(C) = 1. Because its entries are integers, its inverse D
has also integer entries. Remove the first column of D to produce
a matrix B of size (n + 1)× n with AB = Idn (this follows from
CD = Idn+1 , removing the first row and the first column).

Solution 2 by the proposer. We construct di and ci as in Solu-
tion 1. Now we will construct matrices Bi of size (n+ 1)× n such
that ABi = diIdn . If di = 0, then we can make Bi = 0. If di 6= 0,
then the entries of A−1

i are integers divided by di . This means that
diA

−1
i has integer entries and Ai(diA

−1
i ) = diIdn . Inserting a row

of zeroes in A−1
i as the i-th row produces an (n+ 1)× n matrix

Bi with integer entries such that ABi = diIdn . Finally, making
B = c1B1 + c2B2 + ...cn+1Bn+1 we find

AB = A(c1B1 + c2B2 + ...+ cn+1Bn+1)

= c1AB1 + c2AB2 + ...+ cn+1ABn+1

= (c1d1 + c2d2 + ...+ cn+1dn+1)Idn = Idn.

A–46. Proposed by José Luis Díaz-Barrero, BarcelonaTech, Barce-
lona, Spain. Compute

lim
n→+∞

n∑
k=1

arctan

(
k

n2

)
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran

Canaria, Spain. Let x = arctan

(
k

n2

)
. As sinx < x < tanx for

x ∈ (0, π/2) it follows that

k
√
n4 + k2

< arctan

(
k

n2

)
<

k

n2
.
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We have that

lim
n→∞

n∑
k=1

k

n2
= lim

n→∞

n(n+1)

2

n2
=

1

2
.

On the other hand, since for 1 ≤ k ≤ n, n4+1 ≤ n4+k2 ≤ n4+n2 ,
then

lim
n→∞

n∑
k=1

k
√
n4 + n2

≤ lim
n→∞

n∑
k=1

k
√
n4 + k2

≤ lim
n→∞

n∑
k=1

k
√
n4 + 1

lim
n→∞

n(n+1)

2√
n4 + n2

≤ lim
n→∞

n∑
k=1

k
√
n4 + k2

≤ lim
n→∞

n(n+1)

2√
n4 + 1

1

2
≤ lim

n→∞

n∑
k=1

k
√
n4 + k2

≤
1

2
.

Therefore, also from sandwich lemma the proposed limit is

lim
n→∞

n∑
k=1

arctan

(
k

n2

)
=

1

2
.

Solution 2 by Henry Ricardo, Westchester Area Math Circle,
Purchase, NY, USA. Putting x = k/n2 in the known inequality

x−
x3

3
< arctanx < x valid for x > 0

and summing, we have

1

n2

n∑
k=1

k −
1

3n6

n∑
k=1

k3 <
n∑
k=1

arctan

(
k

n2

)
<

1

n2

n∑
k=1

k,

or, after using familiar algebraic formulas and simplifying,

1

2
+

1

2n
−

(n+ 1)2

12n4
<

n∑
k=1

arctan

(
k

n2

)
<

1

2
+

1

2n
.

Thus the sum tends to 1/2 as n→∞.

Solution 3 by the proposer. We begin with the following lemma.
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Lemma 1. Let α > 0 be a real number. If f : [−α,α] → R is
a continuous function two times differentiable in (−α,α) such that
f(0) = 0 and f ′′ is bounded in (−α,α), then the sequence {xn}n≥1

defined by

xn =


n∑
k=1

f

(
k

n2

)
for n > 1

α
;

0 for n ≤ 1
α

is convergent.

Proof. First, we observe that if n > 1
α

, then k
n2 ≤ 1

n
< α for

1 ≤ k ≤ n, and [0, k
n2 ] ⊂ (−α,α). Applying Taylor’s formula, we

get

f

(
k

n2

)
= f(0) +

f ′(0)

1!

(
k

n2

)
+
f ′′(ck)

2!

(
k

n2

)2

,
(

0 < ck <
k

n2

)
and

xn =
n∑
k=1

f

(
k

n2

)
= f ′(0)

n∑
k=1

k

n2
+ f ′′(ck)

n∑
k=1

k2

2n4
.

From the above, it immediately follows that∣∣∣∣∣xn − f ′(0)
n∑
k=1

k

n2

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

k2

2n4
f ′′(ck)

∣∣∣∣∣
≤

n∑
k=1

k2

2n4
|f ′′(ck)| ≤M

n∑
k=1

k2

2n4
,

where 0 < M < +∞. Taking into account the well-known closed
form of the sums of the first and second powers of positive integers
yields ∣∣∣∣xn − f ′(0)

n(n+ 1)

2n2

∣∣∣∣ ≤ Mn(n+ 1)(2n+ 1)

12n4
.

When n→∞, from the preceding we obtain∣∣∣∣xn − 1

2
f ′(0)

∣∣∣∣ < ε, (ε > 0)

and
lim
n→∞

xn =
1

2
f ′(0).
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This completes the proof.

Now we apply the Lemma to the function f : [−α,α] → R de-

fined by f(x) = arctanx. We have f ′(x) =
1

1 + x2
and f ′′(x) =

−2x

(1 + x2)2
, which is bounded, as can be easily checked. Then,

lim
n→∞

xn =
1

2
f ′(0) =

1

2
.
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